

Malla Reddy College Engineering

(Autonomous)
Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad ,Telangana-500100

www.mrec.ac.in

Department of Information Technology

IV B.TECH I SEM (A.Y.2017-18)

Lecture Notes

On

70615- SOFTWARE TESTING

METHODOLOGIES

http://www.mrec.ac.in/

2017-18

Onwards

(MR-17)

MALLA REDDY ENGINEERING COLLEGE

(Autonomous)

B.Tech

VII Semester

Code: 70615
SOFTWARE TESTING METHODOLOGIES

L T P

Credits: 3 2 2 -

Prerequisites: Software Engineering

Course Objectives:
This Course enables the students to understand the principles and need for various types of

testing test adequacy assessment using: data flow, transaction flow and path testing,

describe strategies for generating system test cases, apply the essential characteristics of

path product and regular expressions, explain about the people and organizational issues in

Testing.

MODULE I: Introduction to Software Testing and Defects [08 Periods]

Introduction-Purpose of testing-Dichotomies-Software Testing Principles- Bugs, consequences of

bugs, Taxonomy of bugs -The Tester’s Role in a Software Development Organization-Black box

testing and white box testing.

Defects- Cost of defects- Defect Classes- Defect Examples, software testing life cycle.

MODULE II: Testing Techniques [10 Periods]

Flow graphs and Path Testing- Basics concepts of path testing-predicates-path predicates and

achievable paths- path sensitizing- path instrumentation, application of path testing.

Transaction and Data Flow Testing- Transaction flows- transaction flow testing

techniques,Basics of dataflow testing - strategies in data flow testing–application of data

flow testing.

MODULE III: Test Case Approaches and Testing Types [11
Periods] A: Test Case Design Strategies

Using Black Box Approach to Test Case Design -Random Testing – Requirements based

testing – Boundary Value Analysis – Equivalence Class Partitioning– Compatibility

testing – User documentation testing – Domain testing.

B: Testing Types
Alpha, Beta Tests, Usability and Accessibility testing – Configuration testing - Compatibility

testing

– Testing the documentation.

MODULE IV: Path Testing and Applications [10 Periods]

Paths, Path products and Regular Expressions-Path products and path expression-reduction

procedure- applications- regular expressions and flow anomaly detection.

Logic Based Testing, State Graphs and Transition Testing- Overview decision tables-path

expressions, k-v charts, state, State graphs, transition testing, good and bad state graphs, state testing,

testability tips.

MODULE V: Software Testing Tools and Graph Matrices [09 Periods]

Graph Matrices and Applications- Motivational over view, matrix of graph, relations, power of

matrix, node reduction algorithm.

Software Testing Tools- Taxonomy of Testing tools. Methodology to evaluate automated

testing tools, Load Runner, Win runner and Rational Testing Tools, Java Testing Tools,

JMetra, JUNIT and Cactus.

TEXTBOOKS:
1. Van Nostrand Reinhold, “Software Testing Techniques”, Boris Beizer, 2nd Edition, New

York, 1990.

2. Srinivasan Desikan and Gopalaswamy Ramesh, “Software Testing Principles and

Practices”, Pearson Education, 2006.

REFERENCES:
1. Sams Publishing, “Software Testing”, Ron Patton, Second Edition, Pearson education, 2007.

2. Renu Rajani, Pradeep Oak, “Software Testing – Effective Methods, Tools and Techniques”,

Tata McGraw Hill, 2004.
3. Edward Kit, “Software Testing in the Real World – Improving the Process”, Pearson

Education, 1995.
4. Aditya P. Mathur, “Foundations of Software Testing – Fundamental algorithms and

techniques”, Dorling Kindersley (India) Pvt. Ltd., Pearson Education, 2008

E -RESOURCES
1. https://books.google.co.in/books?isbn=8177222600

2. https://books.google.co.in/books?isbn=817758121X

3. http://www.uta.fi/sis/reports/index/R31_2014.pdf

4. http://nptel.ac.in/courses/106101061/18#

Course Outcomes:
At the end of the course, students will be able to
1. Analyze the Conventional Software Management and improving Software Economics.

2. Demonstrate the principles of conventional software Engineering, Life cycle Phases, and

Artifacts of the process.

3. Apply the Software testing Work Flows of the process, Checkpoints of the process and

Iterative Process Planning.

4. Develop automation Process, Project Control and Process instrumentation, tailoring the

process in software testing.

5. Evaluate the project organizations and responsibilities, future software project management

with case study.

SUBJECT NAME: SOFTWARE TESTING METHODOLOGIES

FACULTY NAME: Dr.A.VIJENDAR

MODULE I

What is testing?

Testing is the process of exercising or evaluating a system or system components by manual or

automated means to verify that it satisfies specified requirements.

http://www.uta.fi/sis/reports/index/R31_2014.pdf
http://nptel.ac.in/courses/106101061/18

The Purpose of Testing Testing consumes at least half of the time and work required to produce

a functional program.

 MYTH: Good programmers write code without bugs. (It’s wrong!!!)

 History says that even well written programs still have 1-3 bugs per hundred statements

Productivity and Quality in Software:

 In production of consumer goods and other products, every manufacturing stage is

subjected to quality control and testing from component to final stage.

 If flaws are discovered at any stage, the product is either discarded or cycled back for

rework and correction.

 Productivity is measured by the sum of the costs of the material, the rework, and the

discarded components, and the cost of quality assurance and testing. o There is a

tradeoff between quality assurance costs and manufacturing costs: If sufficient time is

not spent in quality assurance, the reject rate will be high and so will be the net cost. If

inspection is good and all errors are caught as they occur, inspection costs will

dominate, and again the net cost will suffer.

Phases in a tester's mental life can be categorized into the following 5

phases:

1. Phase 0: (Until 1956: Debugging Oriented) There is no difference between testing and

debugging. Phase 0 thinking was the norm in early days of software development till

testing emerged as a discipline.

2. Phase 1: (1957-1978: Demonstration Oriented) the purpose of testing here is to show

that software works. Highlighted during the late 1970s. This failed because the probability

of showing that software works 'decreases' as testing increases. I.e. the more you test, the

more likely you will find a bug.

3. Phase 2: (1979-1982: Destruction Oriented) the purpose of testing is to show that

software doesn’t work. This also failed because the software will never get released as you

will find one bug or the other. Also, a bug corrected may also lead to another bug.

4. Phase 3: (1983-1987: Evaluation Oriented) the purpose of testing is not to prove

anything but to reduce the perceived risk of not working to an acceptable value (Statistical

Quality Control). Notion is that testing does improve the product to the extent that testing

catches bugs and to the extent that those bugs are fixed. The product is released when the

confidence on that product is high enough. (Note: This is applied to large software products

with millions of code and years of use.)

5. Phase 4: (1988-2000: Prevention Oriented) Testability is the factor considered here. One

reason is to reduce the labor of testing. Other reason is to check the testable and non-

testable code. Testable code has fewer bugs than the code that's hard to test. Identifying the

testing techniques to test the code is the main key here.

Dichotomies:

Testing Versus Debugging:

Many people consider both as same. Purpose of testing is to show that a program has bugs.

The purpose of testing is to find the error or misconception that led to the program's failure

and to design and implement the program changes that correct the error. Debugging usually

follows testing, but they differ as to goals, methods and most important psychology. The

below tab le shows few important differences between testing and debugging.

A Model for Testing:

It includes three models: A model of the environment, a model of the program and a model

of the expected bugs.

Environment:

 A Program's environment is the hardware and software required to make it run. For

online systems, the environment may include communication lines, other systems,

terminals and operators.

 The environment also includes all programs that interact with and are used to create

the program under test - such as OS, linkage editor, loader, compiler, utility routines.

 Because the hardware and firmware are stable, it is not smart to blame the

environment for bugs.

Program:

 Most programs are too complicated to understand in detail.

 The concept of the program is to be simplified in order to test it.

 If simple model of the program doesn’t explain the unexpected behavior, we may have to

modify that model to include more facts and details. And if that fails, we may have to

modify the program.

Bugs:

 Bugs are more insidious (deceiving but harmful) than ever we expect them to be.

 An unexpected test result may lead us to change our notion of what a bug is and our

model of bugs.

 Some optimistic notions that many programmers or testers have about bugs are usually

unable to test effectively and unable to justify the dirty tests most programs need.

CONSEQUENCES OF BUGS:

Importance of bugs: The importance of bugs depends on frequency, correction cost,installation

cost, and consequences.

1. Frequency: How often does that kind of bug occur? Pay more attention to the more frequent

bug types.

2. Correction Cost: What does it cost to correct the bug after it is found? The cost is the sum of 2

factors: (1) the cost of discovery (2) the cost of correction. These costs go up dramatically later

in the development cycle when the bug is discovered. Correction cost also depends on system

size.

3. Installation Cost: Installation cost depends on the number of installations: small for a single

user program but more for distributed systems. Fixing one bug and distributing the fix could

exceed the entire system's development cost.

4. Consequences: What are the consequences of the bug? Bug consequences can range from mild

to catastrophic.

The consequences of a bug can be measure in terms of human rather than machine. Some

consequences of a bug on a scale of one to ten are:

1 Mild: The symptoms of the bug offend us aesthetically (gently); a misspelled output or a

misaligned printout.

2 Moderate: Outputs are misleading or redundant. The bug impacts the system's performance.

3 Annoying: The system's behavior because of the bug is dehumanizing. E.g. Names are

truncated or arbitrarily modified.

4 Disturbing: It refuses to handle legitimate (authorized / legal) transactions. The ATM won’t

give you money. My credit card is declared invalid.

5 Serious: It loses track of its transactions. Not just the transaction itself but the fact that the

transaction occurred. Accountability is lost.

6 Very Serious: The bug causes the system to do the wrong transactions. Instead of losing your

paycheck, the system credits it to another account or converts deposits to withdrawals.

7 Extreme: The problems aren't limited to a few users or to few transaction types. They are

frequent and arbitrary instead of sporadic infrequent) or for unusual cases.

8 Intolerable: Long term unrecoverable corruption of the database occurs and the corruption is

not easily discovered. Serious consideration is given to shutting the system down.

9 Catastrophic: The decision to shut down is taken out of our hands because the system fails.

10 Infectious: What can be worse than a failed system? One that corrupt other systems even

though it does not fall in itself ; that erodes the social physical environment.

TAXONOMY OF BUGS:

There is no universally correct way categorize bugs. The taxonomy is not rigid.

A given bug can be put into one or another category depending on its history and the

Programmer’s state of mind.

The major categories are: (1) Requirements, Features and Functionality Bugs (2) Structural

Bugs (3) Data Bugs (4) Coding Bugs (5) Interface, Integration and System Bugs (6) Test and

(7)Test Design Bugs.

MODULE II

BASICS OF PATH TESTING:

 Path Testing is the name given to a family of test techniques based on judiciously

selecting a set of test paths through the program.

 If the set of paths are properly chosen then we have achieved some measure of test

thoroughness. For example, pick enough paths to assure that every source statement has

been executed at least once.

 Path testing techniques are the oldest of all structural test techniques.

 Path testing is most applicable to new software for unit testing. It is a structural

technique.

 It requires complete knowledge of the program's structure.

 It is most often used by programmers to unit test their own code.

 The effectiveness of path testing rapidly deteriorates as the size of the software aggregate

under test increases.

Control Flow Graphs:

 The control flow graph is a graphical representation of a program's control structure. It

uses the elements named process blocks, decisions, and junctions.

 The flow graph is similar to the earlier flowchart, with which it is not to be confused.

Flow Graph Elements: A flow graph contains four different types of elements. (1) Process Block

(2) Decisions (3) Junctions (4) Case Statements.

1. Process Block: A process block is a sequence of program statements uninterrupted by

either decisions or junctions.

It is a sequence of statements such that if any one of statement of the block is executed,

then all statement thereof are executed. Formally, a process block is a piece of straight

line code of one statement or hundreds of statements

2. Decisions: A decision is a program point at which the control flow can diverge.

Machine language conditional branch and conditional skip instructions are examples of

decisions.

3. Case Statements: A case statement is a multi-way branch or decisions.

Examples of case statement are a jump table in assembly language, and the PASCAL

case statement.

4. Junctions: A junction is a point in the program where the control flow can merge.

TRANSACTION FLOW GRAPHS:

 Transaction flows are introduced as a representation of a system's processing.

 The methods that were applied to control flow graphs are then used for functional testing.

 Transaction flows and transaction flow testing are to the independent system tester what

control flows are path testing are to the programmer.

 The transaction flow graph is to create a behavioral model of the program that leads to

functional testing.

 The transaction flowgraph is a model of the structure of the system's behavior

(functionality).

TRANSACTION FLOW TESTING TECHNIQUES:

 Complicated systems that process a lot of different, complicated transactions

should have explicit representations of the transactions flows, or the equivalent.

 Transaction flows are like control flow graphs, and consequently we should

expect to have them in increasing levels of detail.

 The system's design documentation should contain an overview section that

details the main transaction flows.

 Detailed transaction flows are a mandatory pre requisite to the rational design of

a system's functional test.

DATA FLOW TESTING:

 Data flow testing is the name given to a family of test strategies based on selecting paths

through the program's control flow in order to explore sequences of events related to the

status of data objects.

 For example, pick enough paths to assure that every data object has been initialized prior

to use or that all defined objects have been used for something.

 Motivation: It is our belief that, just as one would not feel confident about a program

without executing every statement in it as part of some test, one should not feel confident

about a program without having seen the effect of using the value produced by each and

every computation.

MODULE III

A DOMAIN IS A SET:

 An input domain is a set.

 If the source language supports set definitions (E.g. PASCAL set types and C

enumerated types) less testing is needed because the compiler does much of it for us.

 Domain testing does not work well with arbitrary discrete sets of data objects.

 Domain for a loop-free program corresponds to a set of numbers defined over the

input vector.

Domain Testing is a Software Testing process in which the application is tested by giving a

minimum number of inputs and evaluating its appropriate outputs. The primary goal of Domain

testing is to check whether the software application accepts inputs within the acceptable range

and delivers required output.

It is a Functional Testing technique in which the output of a system is tested with a minimal

number of inputs to ensure that the system does not accept invalid and out of range input values.

It is one of the most important White Box Testing methods. It also verifies that the system should

not accept inputs, conditions and indices outside the specified or valid range.Domain testing

differs for each specific domain so you need to have domain specific knowledge in order to test a

software system.

While domain testing, you need to consider following things,

1. What domain are we testing?

2. How to group the values into classes?

3. Which values of the classes to be tested?

4. How to determine the result?

LINEAR AND NON LINEAR BOUNDARIES: Nice domain boundaries are defined by linear

inequalities or equations. o The impact on testing stems from the fact that it takes only two points

to determine a straight line and three points to determine a plane and in general n+ 1 point to

https://www.guru99.com/software-testing.html
https://www.guru99.com/functional-testing.html
https://www.guru99.com/white-box-testing.html

determine an n-dimensional hyper plane. In practice more than 99.99% of all boundary

predicates are either linear or can be linearized by simple variable transformations.

COMPLETE BOUNDARIES: Nice domain boundaries are complete in that they span the

number space from plus to minus infinity in all dimensions. Such boundaries can come about

because the path that hypothetically corresponds to them is unachievable, because inputs are

constrained in such a way that such values can't exist, because of compound predicates that

define a single boundary, or because redundant predicates convert such boundary values into a

null set. The advantage of complete boundaries is that one set of tests is needed to confirm the

boundary no matter how many domains it bounds. If the boundary is chopped up and has holes

in it, then every segment of that boundary must be tested for every domain it bounds.

Random testing: It is a black-box software testing technique where programs are tested by

generating random, independent inputs. Results of the output are compared against software

specifications to verify that the test output is pass or fail. In case of absence of specifications the

exceptions of the language are used which means if an exception arises during test execution

then it means there is a fault in the program, it is also used as way to avoid biased testing.

Random Testing Characteristics:

 Random testing is performed where the defects are NOT identified in regular intervals.

 Random input is used to test the system's reliability and performance.

 Saves time and effort than actual test efforts.

 Other Testing methods Cannot be used to.

Random Testing Steps:

 Random Inputs are identified to be evaluated against the system.

 Test Inputs are selected independently from test domain.

 Tests are Executed using those random inputs.

 Record the results and compare against the expected outcomes.

 Reproduce/Replicate the issue and raise defects, fix and retest

Types of Software Testing:

Functional Testing types include: Unit Testing

 Integration Testing

 System Testing

 Sanity Testing

 Smoke Testing

 Interface Testing

 Regression Testing

 Beta/Acceptance Testing

Non-functional Testing types include: Performance Testing

 Load Testing

 Stress Testing

 Volume Testing

 Security Testing

 Compatibility Testing

 Reliability Testing

 Usability Testing

 Compliance Testing

 Localization Testing

Alpha Testing
 It is the most common type of testing used in the Software industry. The objective of this

testing is to identify all possible issues or defects before releasing it into the market or to

the user.

 Alpha Testing is carried out at the end of the software development phase but before the

Beta Testing. Still, minor design changes may be made as a result of such testing.

Acceptance Testing

 An Acceptance Test is performed by the client and verifies whether the end to end the

flow of the system is as per the business requirements or not and if it is as per the needs

of the end-user. Client accepts the software only when all the features and functionalities

work as expected.

 It is the last phase of the testing, after which the software goes into production. This is

also called User Acceptance Testing (UAT).

Ad-hoc Testing

 The name itself suggests that this testing is performed on an Ad-hoc basis i.e. with no

reference to the test case and also without any plan or documentation in place for such

type of testing.

 The objective of this testing is to find the defects and break the application by executing

any flow of the application or any random functionality.

 Ad-hoc Testing is an informal way of finding defects and can be performed by anyone in

the project. It is difficult to identify defects without a test case but sometimes it is

possible that defects found during ad-hoc testing might not have been identified using

existing test cases.

Accessibility Testing

 The aim of Accessibility Testing is to determine whether the software or application is

accessible for disabled people or not.

 Here, disability means deaf, color blind, mentally disabled, blind, old age and other

disabled groups. Various checks are performed such as font size for visually disabled,

color and contrast for color blindness, etc.

Beta Testing

 Beta Testing is a formal type of Software Testing which is carried out by the customer. It

is performed in the Real Environment before releasing the product to the market for the

actual end-users.

 Beta Testing is carried out to ensure that there are no major failures in the software or

product and it satisfies the business requirements from an end-user perspective. Beta

Testing is successful when the customer accepts the software.

https://www.softwaretestinghelp.com/what-is-acceptance-testing/
https://www.softwaretestinghelp.com/ad-hoc-testing/
https://www.softwaretestinghelp.com/what-is-web-accessibility-testing/
https://www.softwaretestinghelp.com/beta-testing/

 Usually, this testing is typically done by end-users or others. It is the final testing done

before releasing an application for commercial purpose. Usually, the Beta version of the

software or product released is limited to a certain number of users in a specific area.

Black Box Testing

 Internal system design is not considered in this type of testing. Tests are based on the

requirements and functionality.

Compatibility Testing

 It is a testing type in which it validates how software behaves and runs in a different

environment, web servers, hardware, and network environment.

 Ensures that software can run on a different configuration, different database, different

browsers, and their versions. Compatibility testing is performed by the testing team.

MODULE IV

PATH PRODUCTS AND PATH EXPRESSION:

 Flow graphs are being an abstract representation of programs.

 Any question about a program can be cast into an equivalent question about an

appropriate flowgraph.

 Most software development, testing and debugging tools use flow graphs analysis

techniques.

PATH PRODUCTS:

 Normally flow graphs used to denote only control flow connectivity.

 The simplest weight we can give to a link is a name. o Using link names as weights, we

then convert the graphical flow graph into an equivalent algebraic like expressions which

denotes the set of all possible paths from entry to exit for the flow graph. o Every link of

a graph can be given a name.

 The link name will be denoted by lower case italic letters In tracing a path or path

segment through a flow graph, you traverse a succession of link names.

 The name of the path or path segment that corresponds to those links is expressed

naturally by concatenating those link names.

PATH EXPRESSION:

 Consider a pair of nodes in a graph and the set of paths between those node.

 Denote that set of paths by Upper case letter such as X,Y.

 The + sign is understood to mean "or" between the two nodes of interest, paths ac,

or abc, or abbc, and so on can be taken.

 Any expression that consists of path names and "OR"s and which denotes a set of

paths between two nodes is called a "Path Expression”.

PATH PRODUCTS:

 The name of a path that consists of two successive path segments is

conveniently expressed by the concatenation or Path Product of the

segment names.

 For example, if X and Y are defined as X=abcde,Y=fghij,then the path

corresponding to X followed by Y is denoted by XY=abcdefghij

 Similarly,

 YX=fghijabcde

 aX=aabcde

 Xa=abcdea

 XaX=abcdeaabcde

 o If X and Y represent sets of paths or path expressions, their product

represents the

 set of paths that can be obtained by following every element of X by any

element

 of Y in all possible ways. For example,

 o X = abc + def + ghi

 o Y = uvw + z

 Then,

 XY = abcuvw + defuvw + ghiuvw + abcz + defz + ghiz

PATH SUMS:

 The "+" sign was used to denote the fact that path names were part of the same set

of paths.

 The "PATH SUM" denotes paths in parallel between nodes.

 Links a and b in Figure 5.1a are parallel paths and are denoted by a + b.

Similarly,links c and d are parallel paths between the next two nodes and are

denoted by c +d.

 The set of all paths between nodes 1 and 2 can be thought of as a set of

parallelpaths and denoted by eacf+eadf+ebcf+ebdf.

REDUCTION PROCEDURE:

REDUCTION PROCEDURE ALGORITHM:

 This section presents a reduction procedure for converting a flowgraph whose links are

labeled with names into a path expression that denotes the set of all entry/exit paths in

that flowgraph. The procedure is a node-by-node removal algorithm.

 The steps in Reduction Algorithm are as follows:

1. Combine all serial links by multiplying their path expressions.

2. Combine all parallel links by adding their path expressions.

3. Remove all self-loops (from any node to itself) by replacing them with a link of the

form X*, where X is the path expression of the link in that loop

STEPS 4 - 8 ARE IN THE ALGORIHTM'S LOOP:

4. Select any node for removal other than the initial or final node. Replace it with a set of

equivalent links whose path expressions correspond to all the ways you can form a product of the

set of inlinks with the set of outlinks of that node.

5. Combine any remaining serial links by multiplying their path expressions.

6. Combine all parallel links by adding their path expressions.

7. Remove all self-loops as in step 3.

8. Does the graph consist of a single link between the entry node and the exit node? If yes, then

the path expression for that link is a path expression for the original flowgraph; otherwise, return

to step 4.

REGULAR EXPRESSIONS:

The generic flow-anomaly detection problem (note: not just data-flow anomalies, but any flow

anomaly) is that of looking for a specific sequence of options considering all possible paths

through a routine.

 Let the operations be SET and RESET, denoted by s and r respectively, and we want to

know if there is a SET followed immediately a SET or a RESET followed immediately

by a RESET (an ss or an rr sequence).

 Some more application examples:

1. A file can be opened (o), closed (c), read (r), or written (w). If the file is read or

written to after it's been closed, the sequence is nonsensical. Therefore, cr and cw are anomalous.

Similarly, if the file is read before it's been written, just after opening, we may have a bug.

Therefore, or is also anomalous. Furthermore, oo and cc, though not actual bugs, are a waste of

time and therefore should also be examined.

2. A tape transport can do a rewind (d), fast-forward (f), read (r), write (w), stop (p), and skip (k).

There are rules concerning the use of the transport; for example, you cannot go from rewind to

fast-forward without an intervening stop or from rewind or fast-forward to read or write without

an intervening stop. The following sequences are anomalous: df, dr, dw, fd, and fr. Does the

flowgraph lead to anomalous sequences on any path? If so, what sequences and under what

circumstances?

3. The data-flow anomalies discussed in Unit 4 requires us to detect the dd, dk, kk, and ku

sequences. Are there paths with anomalous data flows?

OVERVIEW OF LOGIC BASED TESTING:

The functional requirements of many programs can be specified by decision tables, which

provide a useful basis for program and test design.

 Consistency and completeness can be analyzed by using boolean algebra, which can also

be used as a basis for test design. Boolean algebra is trivialized by using Karnaugh-

Veitch charts.

 "Logic" is one of the most often used words in programmers' vocabularies but one of

their least used techniques.

 Boolean algebra is to logic as arithmetic is to mathematics. Without it, the test or

programmer is cut off from many test and design techniques and tools that incorporate

those techniques.

 Logic has been, for several decades, the primary tool of hardware logic designers.

 Many test methods developed for hardware logic can be adapted to software logic

testing. Because hardware testing automation is 10 to 15 years ahead of software testing

automation, hardware testing methods and its associated theory is a fertile ground for

software testing methods.

 As programming and test techniques have improved, the bugs have shifted closer to the

process front end, to requirements and their specifications. These bugs range from 8% to

30% of the total and because they're first-in and last-out, they're the costliest of all.

 The trouble with specifications is that they're hard to express.

 Boolean algebra (also known as the sentential calculus) is the most basic of all logic

systems.

 Higher-order logic systems are needed and used for formal specifications.

 Much of logical analysis can be and is embedded in tools. But these tool incorporate

methods to simplify, transform, and check specifications and the methods are to a large

extent based on boolean algebra.

MODULE V

GRAPH MATRICES AND APPLICATIONS:

Problem with Pictorial Graphs

 Graphs were introduced as an abstraction of software structure.

 Whenever a graph is used as a model, sooner or later we trace paths

through it- to find a set of covering paths, a set of values that

willsensitize paths, the logic function that controls the flow, the

processing time of the routine, the equations that define the domain, or

whether a state is reachable or not.

 Path is not easy, and it’s subject to error. You can miss a link here and

there or cover some links twice.

 One solution to this problem is to represent the graph as a matrix and to

use matrix operations equivalent to path tracing. These methods are more

methodical and mechanical and don’t depend on your ability to see a path

they are more reliable.

 If you build test tools or want to know how they work, sooner or later

you will be implementing or investigating analysis routines based on

these methods.

 It is hard to build algorithms over visual graphs so the properties or graph

matrices are fundamental to tool building.

The Basic Algorithms

The basic tool kit consists of: Matrix multiplication, which is used to get the

path expression from every node to every other node. A partitioning algorithm

for converting graphs with loops into loop free graphs or equivalence classes. A

collapsing process which gets the path expression from any node to any other

node.

The Matrix of a Graph

A graph matrix is a square array with one row and one column for every node

in the graph. Each row-column combination corresponds to a relation between

the node corresponding to the row and the node corresponding to the column.

The relation for example, could be as simple as the link name, if there is a link

between the nodes.

Some of the things to be observed: The size of the matrix equals the number of

nodes. There is a place to put every possible direct connection or link between

any and any other node. The entry at a row and column intersection is the link

weight of the link that connects the two nodes in that direction.

1. A connection from node i to j does not imply a connection from node j to

node i.

2. If there are several links between two nodes, then the entry is a sum; the “+”

sign denotes parallellinks as usual.

Connection Matrix-continued

Each row of a matrix denotes the out links of the node corresponding to that

row.

Each column denotes the in links corresponding to that node.

A branch is a node with more than one nonzero entry in its row.

A junction is node with more than one nonzero entry in its column.

A self loop is an entry along the diagonal.

Cyclomatic Complexity

The cyclomatic complexity obtained by subtracting 1 from the total number of

entries in each row

and ignoring rows with no entries, we obtain the equivalent number of decisions

for each row.

Adding these values and then adding 1 to the sum yields the graph’s cyclomatic

complexity.

The Powers of a Matrix

 Each entry in the graph’s matrix expresses a relation between the pair of

nodes that corresponds to that entry.

 Squaring the matrix yields a new matrix that expresses the relation

between each pair of nodes via one intermediate node under the

assumption that the relation is transitive.

 The square of the matrix represents all path segments two links long.

 The third power represents all path segments three links long.

Partitioning Algorithm

 Consider any graph over a transitive relation. The graph may have

loops.

 We would like to partition the graph by grouping nodes in such a

way that every loop is contained within one group or another.

 Such a graph is partially ordered.

 There are many used for an algorithm that does that:

 We might want to embed the loops within a subroutine so as to

have a resulting graph which is loop free at the top level.

 Many graphs with loops are easy to analyze if you know where to

break the loops.

While you and I can recognize loops, it’s much harder to program a

tool to do it unless you have

a solid algorithm on which to base the tool.

	Course Objectives:
	MODULE III: Test Case Approaches and Testing Types [11 Periods] A: Test Case Design Strategies
	B: Testing Types
	TEXTBOOKS:
	REFERENCES:
	E -RESOURCES
	Course Outcomes:
	Phases in a tester's mental life can be categorized into the following 5 phases:
	CONSEQUENCES OF BUGS:
	MODULE III
	Types of Software Testing:
	Problem with Pictorial Graphs

