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(Autonomous) 

B.Tech. 

III Semester 

Code: 80B09 
PROBABILITY AND STATISTICS 

(Common for ME, CSE, IT and Min.E) 

L T P 

Credits: 3 3 - - 

 

Prerequisites: Basic Probability 

Course Objectives: 

This course is meant to provide a grounding in Statistics and foundational concepts that can be 

applied in modeling processes, decision making and would come in handy for the prospective 

engineers in most branches. 

 
Module - I: Probability [09 Periods] 

Introduction to Probability, events, sample space, mutually exclusive events, Exhaustive events, 

Addition theorem for 2& n events and their related problems. Dependent and Independent events, 

conditional probability, multiplication theorem , Baye’s Theorem, Statement of Weak law of 

large numbers 

 
Module - II: Random Variables and Probability Distributions [10 Periods] 

Random variables – Discrete Probability distributions. Bernoulli, Binomial, poisson, mean, 

variance, moment generating function–related problems. Geometric distributions. Continuous 

probability distribution, Normal distribution, Exponential Distribution, mean, variance, moment 

generating function–related problems. Gamma distributions (Only mean and Variance) Central 

Limit Theorem 

 
Module - III: Sampling Distributions & Testing of Hypothesis [11 Periods] 

A: Sampling Distributions: Definitions of population-sampling-statistic, parameter. Types of 

sampling, Expected values of Sample mean and variance, sampling distribution, Standard error, 

Sampling distribution of means and sampling distribution of variance. Parameter estimations – 

likelihood estimate, point estimation and interval estimation. 



B: Testing of hypothesis: Null hypothesis, Alternate hypothesis, type I, & type II errors 

– critical region, confidence interval, and Level of significance. One tailed test, two tailed test. 

Large sample tests: 

1. Testing of significance for single proportion. 

2. Testing of significance for difference of proportion. 

3. Testing of significance for single mean. 

4. Testing of significance for difference of means. 

 
Module IV: Small sample tests [09 Periods] 

Student t-distribution, its properties; Test of significance difference between  sample mean and 

population mean; difference between means of two small samples, Paired t- test, Snedecor’s F- 

distribution and it’s properties. Test of equality of two population variances, Chi-square 

distribution, its properties, Chi-square test of goodness of fit and independence of attributes. 

 
Module V: Correlation, Regression: [09 Periods] 

Correlation & Regression: Correlation, Coefficient of correlation, the rank correlation. 

Regression, Regression Coefficient, The lines of regression: simple regression. 

 
TEXT BOOKS: 

1. Walpole, Probability & Statistics, for Engineers & Scientists, 8th Edition, Pearson 

Education. 

2. Paul A Maeyer Introductory Probability and Statistical Applications, John Wiley 

Publicaitons. 

3. Monte Gomery, “Applied Statistics and Probability for Engineers”, 6th Edition, Wiley 

Publications. 

 
REFERENCES: 

1. Sheldon M Ross, Introduction to Probability & Statistics, for Engineers & Scientists, 

5th Edition, Academic Press. 

2. Miller & Freund’s , Probability & Statistics, for Engineers & Scientists, 6th Edition, 

Pearson Education. 

3. Murray R Spiegel, Probability & Statistics, Schaum’s Outlines, 2nd Edition, Tata Mc. 

Graw Hill Publications. 

4. S Palaniammal, Probability & Queuing Theory, 1st Edition, Printice Hall. 

 
E RESOURCES: 

1. http://www.csie.ntu.edu.tw/~sdlin/download/Probability%20&%20Statistics.pdf 

(Probability & Statistics for Engineers & Scientists text book) 

http://www.csie.ntu.edu.tw/~sdlin/download/Probability%20%26%20Statistics.pdf


2. http://www.stat.pitt.edu/stoffer/tsa4/intro_prob.pdf (Random variables and its 

distributions) 

3. http://users.wfu.edu/cottrell/ecn215/sampling.pdf (Notes on Sampling and hypothesis 

testing) 

4. http://nptel.ac.in/courses/117105085/ (Introduction to theory of probability) 

5. http://nptel.ac.in/courses/117105085/9 (Mean and variance of random variables) 

6. http://nptel.ac.in/courses/111105041/33 (Testing of hypothesis) 

7. http://nptel.ac.in/courses/110106064/5 (Measures of Dispersion) 
 

 

 

 

 

 

 

 

 

Course Outcomes: 

At the end of the course, students will able to: 

1. The students will understand central tendency and variability for the given data. 

2. Students would be able to find the Probability in certain realistic situation. 

3. Students would be able to identify distribution in certain realistic situation. It is mainly 

useful for circuit as well as non-circuit branches of engineering. Also able to 

differentiate among many random variables Involved in the probability models. It is 

quite useful for all branches of engineering. 

4. The student would be able to calculate mean and proportions (large sample) and to 

make important decisions from few samples which are taken out of unmanageably 

huge populations. 

5. The student would be able to calculate mean and proportions (small sample) and to 

make Important decisions from few samples which are taken out of unmanageably 

huge populations. 

 
CO- PO 

(3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak 

COs 
Programme Outcomes(POs) 

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 

CO1 3 3 1 4  3     3 1 

CO2 3 3 2  3   2 1  2  

CO3 3 2 1  3     2 3  

CO4 3 3 2  2  1  1   1 

CO5 3 2 2          
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http://nptel.ac.in/courses/117105085/9
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http://nptel.ac.in/courses/110106064/5


PROBABILITY 
 
 

INTRODUCTION: 
 

Probability theory was originated from gambling theory. A large number of problems exist even 

today which are based on the game of chance, such as coin tossing, dice throwing and playing cards. 

The probability is defined in two different ways, 

 

➢ Mathematical (or a priori) definition 

➢ Statistical (or empirical) definition 

SOME IMPORTANT TERMS &CONCEPTS: 

• RANDOM EXPERIMENTS: 

Experiments of any type where the outcome cannot be predicted are called random 

experiments. 

• SAMPLE SPACE: 

A set of all possible outcomes from an experiment is called a sample space. 

Eg: Consider a random experiment E of throwing 2 coins at a time. The possible outcomes are 

HH, TT, HT, TH. 
These 4 outcomes constitute a sample space denoted by, S ={ HH, TT, HT, TH}. 

• TRAIL & EVENT: 

Consider an experiment of throwing a coin. When tossing a coin, we may get a head(H) or 

tail(T). Here tossing of a coin is a trail and getting a hand or tail is an event. 

In otherwords, “Every non-empty subset of A of the sample space S is called an event”. 

• NULL EVENT: 

An event having no sample point is called a null event and is denoted by ∅. 

• EXHAUSTIVE EVENTS: 

The total number of possible outcomes in any trail is known as exhaustive 

events. 

Eg: In throwing a die the possible outcomes are getting 1 or 2 or 3 or 4 or 5 or 6. Hence we have 

6 exhaustive events in throwing a die. 

• MUTUALLY EXCLUSIVE EVENTS: 

Two events are said to be mutually exclusive when the occurrence of one affects the 

occurrence of the other. In otherwords, if A & B are mutually exclusive events and if A happens 

then B will not happen and viceversa. 

Eg: In tossing a coin the events head or tail are mutually exclusive, since both tail & head cannot 

appear in the same time. 



• EQUALLY LIKELY EVENTS: 

Two events are said to be equally likely if one of them cannot be expected in the preference to 

the other. 

Eg: In throwing a coin, the events head & tail have equal chances of occurrence. 

• INDEPENDENT & DEPENDENT EVENTS: 

Two events are said to be independent when the actual happening of one doesnot 

influence in any way the happening of the other. Events which are not independent are called 

dependent events. 

Eg: If we draw a card in a pack of well shuffled cards and again draw a card from the rest of pack 

of cards (containing 51 cards), then the second draw is dependent on the first. But if on the other 

hand, we draw a second card from the pack by replacing the first card drawn, the second draw is 

known as independent of the first. 

• FAVOURABLE EVENTS: 

Mathematical or classical or a priori definition of probability, 

Probability (of happening an event E) = 
 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠

 
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠 

= 
𝑚 

𝑛 
Where m = Number of favourable cases 

n = Total number of exhaustive cases. 

 

PROBLEMS: 

1. In tossing a coin, what is the prob. of getting a head. Sol: 
Total no. of events = {H, T}= 2 

Favourable event = {H}= 1 

 

Probability =
 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠 

= 
1 

2 

2. In throwing a die, the prob. of getting 2. 

 

Sol: Total no. of events = {1,2,3,4,5,6}= 6 Favourable 

event = {2}= 1 

 

Probability =
 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠 

= 
1 

6 

3. Find the prob. of throwing 7 with two dice. 

 

Sol: Total no. of possible ways of throwing a dice twice = 36 ways 

Number of ways of getting 7 is, (1,6), (2,5), (3,4), (4,3), (5,2), (6,1) = 6 



Probability =
 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠 

=
 6  

36 

= 
1 

6 

4. A bag contains 6 red & 7 black balls. Find the prob. of drawing a red ball. Sol: 
Total no. of possible ways of getting 1 ball = 6 + 7 

Number of ways of getting 1 red ball = 6 

 

Probability =
 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠 

=
 6  

13 

5. Find the prob. of a card drawn at random from an ordinary pack, is a diamond. Sol: 
Total no. of possible ways of getting 1 card = 52 

Number of ways of getting 1 diamond card is 6 

 

Probability =
 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠 

=  
13 

52 

= 
1 

4 

6. From a pack of 52 cards, 1 card is drawn at random. Find the prob. of getting a queen. Sol: A 
queen may be chosen in 4 ways. 

Total no. of ways of selecting 1 card = 52 

 

Probability =
 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠 

=  
 4 

= 
1 

52 13 

7. Find the prob. of throwing: (a) 4, (b) an odd number, (c) an even number with anordinary die (six 

faced). 
Sol: a) When throwing a die there is only one way of getting 4. 

 

Probability =
 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠 
 

= 
1 

6 

b) Number of ways of falling an odd number is 1, 3, 5 = 3
 

Probability  = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠 

= 
3 

= 
1 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠 6 2 



c) Number of ways of falling an even number is 2, 4, 6 = 3 

Probability = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠 

= 
3 

= 
1 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠 6 2 

 

8. From a group of 3 Indians, 4 Pakistanis, and 5 Americans, a sub-committee of four people 
is selected by lots. Find the probability that the sub-committee will consist of 

i) 2 Indians and 2 Pakistanis. 

ii) 1 Indians, 1 Pakistanis and 2 Americans. 

iii) 4 Americans. 

 

Sol: Total no. of people = 3 + 4 + 5 = 12 

 
∴ 4 people can be chosen from 12 people = 12𝐶4 ways 

= 
12 ×11 ×10 ×9 

= 495 ways
 

1 ×2 ×3×4 

 

i) 2 Indians can be chosen from 3 Indians = 3𝐶2 ways 
2 Pakistanis can be chosen from 4 Pakistanis = 4𝐶2 ways 

∴ No. of favourable cases = 3𝐶2 × 4𝐶2 

∴ Prob. =
 3𝐶2× 4𝐶2 

= 
2
 

495 55 

 
ii) 1 Indian can be chosen from 3 Indians = 3𝐶1 ways 

1 Pakistani can be chosen from 4 Pakistanis = 4𝐶1 ways 

2 Americans can be chosen from 5 Americans = 5𝐶2 ways 

Favourable events = 3𝐶1 × 4𝐶1 × 5𝐶2 

∴ Prob. =
 3𝐶1× 4𝐶2× 5𝐶2

 = 
8 

495 33 

 

iii) 4 Americans can be chosen from 5 Americans = 5𝐶4 ways 
 

∴ Prob. = 5𝐶4 
= 1 

495 99 

 

9. A bag contains 7 white, 6 red & 5 black balls. Two balls are drawn at random. Find the prob. 
that they both will be white. 

Sol: Total no. of balls = 7 + 6 + 5 

 

= 18 



From there 18 balls, 2 balls can be drawn in 18𝐶2 ways 

i.e) 
18 × 17 

= 153 
1 ×2 

 
2 white balls can be drawn from 7 white balls = 7𝐶2 ways 

= 21 

∴ Favourable cases = 21 

P(drawing 2 white balls) = 21 = 7 

153 51 

 

10. A bag contains 10 white, 6 red, 4 black & 7 blue balls. 5 balls are drawn at random. What is the 
prob. that 2 of them are red and one is black? 

Sol: Total no. of balls = 10 + 6 + 4 + 7 =27 

 

5 balls can be drawn from these 27 balls = 27𝐶5 ways 

= 
27 × 26 ×25 × 24 ×23 

1 ×2 ×3×4 ×5 
 

= 80730 ways Total 

no. of exhaustive events = 80730 

2 red balls can be drawn from 6 red balls = 6𝐶2 ways 
 

= 6 × 5 = 15 ways 

1 ×2 

 
1 black balls can be drawn from 4 black balls = 4𝐶1 ways 

= 4 

∴ No. of favourable cases = 15 × 4 = 60 

Probability = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 

𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 
𝑐𝑎𝑠𝑒𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠 
 

= 
60 

80730 

= 
6 

8073 
 

11. What is the prob. of having a king and a queen, when 2 cards are drawn from a pack of 52 
cards? 

Sol: 2 cards can be drawn from a pack of 52 cards = 52𝐶2 ways 

= 
52 × 51 

= 1326 ways 

1 ×2 



1 queen card can be drawn from 4 queen cards = 4𝐶1 ways 1 

king card can be drawn from 4 king cards = 4𝐶1 ways 
Favourable cases = 4 × 4 = 16 ways 

P(drawing 1 queen & 1 king card ) = 
 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠

 

 

= 
8 

663 

   𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠
= 

16 

 

 

 
1326 

 

12. What is the prob. that out of 6 cards taken from a full pack, 3 will be black and 3 will be red? 
Sol: A full pack contains 52cards. Out of 52 cards, 26 cards are red & 26 black cards . 

 

6 cards can be chosen from 52 cards = 52𝐶6 ways 
3 black cards can be chosen from 26 black cards = 26𝐶3 ways 3 red 

cards can be chosen from 26 red cards = 26𝐶3 ways 
Favourable cases = 26𝐶3 × 26𝐶3 

Probability = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠 
 

=
 26𝐶3× 26𝐶3 

52𝐶6 

 

13. Find the prob. that a hand at bridge will consist of 3 spades, 5 hearts, 2 diamonds & 3 clubs? 
Sol: Total no. of balls = 3 + 5 + 2 + 3 = 13 

 
From 52 cards, 13 cards are chosen in 52𝐶13 ways 

In a pack of 52 cards, there are 13 cards of each type. 3 

spades can be chosen from 13 spades = 13𝐶3 ways 5 

hearts can be chosen from 13 hearts = 13𝐶5 ways 

2 diamonds can be chosen from 13 diamonds = 13𝐶2 ways 3 

clubs can be chosen from 13 clubs = 13𝐶3 ways 
Hence the total no. of favourable cases are = 13𝐶3 × 13𝐶5 × 13𝐶2 × 13𝐶3 

Probability =
 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠 
 

= 
13𝐶3×13𝐶5 × 13𝐶2 × 

13𝐶3 52𝐶13 
 

OPERATIONS ON SETS: 
 

If A & B are any two sets, then 

 

i) UNION OF TWO SETS 

 

𝐴 ∪ 𝐵 = {𝑥: 𝑥 ∈ 𝐴 (𝑜𝑟) 𝑥 ∈ 𝐵} 

 

In general, 𝐴1 ∪ 𝐴2 ∪ … . .∪ 𝐴𝑛 = {𝑥: 𝑥 ∈ 𝐴1 𝑜𝑟 𝑥 ∈ 𝐴2 𝑜𝑟 ........ 𝑜𝑟 𝑥 ∈ 𝐴𝑛} 
 

i.e) ⋃𝑛 𝐴𝑖   = {𝑥: 𝑥   ∈ 𝐴𝑖,  for atleast onei} 
𝑖=1 

ii) INTERSECTION OF TWO SETS 



𝐴 ∩ 𝐵 = { 𝑥: 𝑥 ∈ 𝐴 & 𝑥 ∈ 𝐵} 

 

In general, 𝐴1  ∩ 𝐴2  ∩ … . .∩ 𝐴𝑛 = {𝑥: 𝑥 ∈ 𝐴1  𝑎𝑛𝑑 𝑥 ∈ 𝐴2 𝑎𝑛𝑑 ........ 𝑎𝑛𝑑 𝑥 ∈ 𝐴𝑛} 
 

i.e) ⋂𝑛 𝐴𝑖 = {𝑥: 𝑥 ∈ 𝐴𝑖, for all i =  1,2,3…  n} 
𝑖=1 

iii) COMPLEMENT OF A SET 

𝐴′ 𝑜𝑟 𝐴̅ = {𝑥: 𝑥 ∉ 𝐴} 

iv) DIFFERENCE OF TWO SETS A – 

B = {𝑥: 𝑥 ∈ 𝐴 𝑏𝑢𝑡 𝑥 ∉ 𝐵} 
COMMUTATIVE LAW: 

 

𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴 & 𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴 
 

ASSOCIATIVE LAW: 

(𝐴 ∪ 𝐵) ∪ 𝐶 = 𝐴 ∪ (𝐵 ∪ 𝐶) & (𝐴 ∩ 𝐵) ∩ 𝐶 = 𝐴 ∩ (𝐵 

∩ 𝐶) DISTRIBUTIVE LAW: 

𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶) 

 

𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶) 

COMPLEMENTARY LAW: 

 

𝐴 ∪ 𝐴′ = 𝑆 & 𝐴 ∩ 𝐴′ = ∅ 
 

AXIOMATIC APPROACH TO PROBABILITY: 
 

It is a rule which associates to each event a real number P (A) which satisfies the following 

three axioms. 

AXIOM I : For any event A, P (A) ≥ 0. AXIOM 

II : P (S) =1 

AXIOM III: If A1, A2,….., An are finite number of disjoint event of S, then 

P(A1, A2,….., An) = P(A1) + P(A2) + …..+ P(An) 

= ∑ P (Ai) 

THEOREMS ON PROBABILITY: 

THEOREM 1: Probability of an impossible event is zero. i.e) P (∅) = 0 

THEOREM 2: Probability of the complementary event 𝐴̅ of A is given by, P (𝐴̅) =1 –  P(A). 

THEOREM 3: For any two events A & B, P (𝐴̅ ∩ 𝐵) = P (B) – P(A∩ 𝐵). 

THEOREM 4: If A and B are two events such that A ⊂ B, then P (B ∩ 𝐴̅) = P (B) – P 

(A).THEOREM 5: If B ⊂ A, then P (A) ≥ P (B). 

THEOREM 6: If A ∩ B = ∅, then P (A) ≤ P (𝐵̅). 
LAW OF ADDITION OF PROBABILITIES: 

 

P (𝐴 ∪ 𝐵) = P (A) + P (B) – P (𝐴 ∩ 𝐵), where A & B are any two events and are not disjoint. 
PROBLEMS: 

 

1. If from a pack of cards a single card is drawn. What is the prob. that it is eithera spade or a 

king? 

Sol: P (A) = P (a spade card) = 
13   

 

52 



P (B) = P (a king card) = 
4   

 

52 

P (either a spade or a king card) = P (A or B) 

 

= P (A ∪ 𝐵) 

 

= P (A) + P (B) – P (A ∩ 𝐵) 

 
 13 4 13 4 

= + - [ × ] 
52 

5 

2 

 

=
 4 

13 

52 52 

 

2. A person is known to hit the target in 3 out of 4 shots, whereas another person is known to hit the 

target in 2 out of 3 shots. Find the probability of the targets being hit at all when they both person 

try. 
 

Sol: The prob. that the first person hit the target = P (A) = 3 

4 
 

The prob. that the second person hit the target = P (B) = 2 

3 
 

The two events are not mutually exclusive, since both persons hit the same target. 

 

P (A or B) = P (A ∪ 𝐵) 

 

= P (A) + P (B) – P (A ∩ 𝐵) 
 

= 
3 

+ 
2 

- [ 
3 

× 
2
] 



  

4 3 4 3 

 

= 
11 

12 

 

MULTIPLICATION LAW OF PROBABILITY (INDEPENDENT EVENTS): 
 

If A & B are two independent events, then 

 

P (A ∩ 𝐵) = P (Both A & B will happen) 

 

= P (A) × P (B) 

 

PROBLEMS: 

1.  If P (A) = 0.35, P (B) = 0.73, P (A ∩ 𝐵) = 0.14. Find P (𝐴̅  ∪  𝐵̅) 
Sol: Using Demargon’s Law, 

𝐴̅ ∪ 𝐵̅ = ̅𝐴̅̅∪ ̅̅ 

P (𝐴̅  ∪  𝐵̅) = P (̅𝐴̅̅∪̅̅̅ ̅𝐵̅) P 

(𝐴̅  ∪  𝐵̅) = 1 – P (A ∩ 𝐵) 
= 1 – 0.14 = 0.86 

 

2. A bag contains 8 white and 10 black balls. Two balls are drawn in succession. What is the prob. 

that first is white and second is black. 

Sol: Total no. of balls = 8 + 10 = 18 

 

P (drawing one white ball from 8 balls) = 8    

18 

 
P (drawing one black ball from 10 balls) = 10    

18 

 
P (drawing first white & second black) =  8  

×  
10 

1 

8 
18 

=  
20 

8 

1 



1 

3. Two persons A & B appear in an interview for 2 vacancies for the same post. The probability of 

A’s selection is 1 and that of B’s selection is 1 . What is the probability that, i) both of them will 
7 5 

be selected, ii) none of them will be selected. 

 

Sol: P (A selected) =  1 

7 

 

P (B selected) =  1 

5 

 
P (A will not be selected) = 1 -  1 = 6 

7 7 

 
P (B will not be selected) = 1 - 1 = 4 

5 5 
 

i) P (Both of them will be selected) = P (A) × P (B) 
 

= 
1  

× 
1 

7 5 

 

=
 1 

35 

 

ii) P (none of them will be selected) = P (A) × P (B) 

 

= 
6  

× 
4 

7 5 

 

= 
24 

35 

4. A problem in mathematics is given to 3 students A, B, C whose chances of solving it are
 

1   1
, ,  respectively. What is the prob. that the problem will be solved? 

2 3 4 

 

Sol: P (A will not solve the problem) = 1- 1 = 1 

2 2 

 

P (B will not solve the problem) = 1- 1 = 2 
3 3 

 

P (C will not solve the problem) = 1- 1 = 3 
4 4 

P (all three will not solve the problem) = 1 
 

 

2 
× 

2 
× 

3 

3 4 

= 
1 

4 



∴ P (all the three will solve the problem) = 1- 1 = 3 

4 4 
 

5. What is the chance of getting two sixes in two rolling of a single die? 
 

Sol: P (getting a six in first rolling) = 1 

6 
 

P (getting a six in second rolling) = 1 

6 
 

Since two rolling are independent. 

∴ P (getting two sixes in 2 rolls) = 1 × 
1
 

6 6 
 

=
 1 

36 

 

6. An article manufactured by a company consists of two parts A & B. In the process of 

manufacture of part A, 9 out of 100 are likely to be defective. Similarly, 5 0ut of 100 are likely 

to be defective in the manufacture of part B. Calculate the prob. that theassembled article will 

not be (assuming that the events of finding the part A non-defective and that of B are 

independent). 

 

Sol: Prob. that part A will be defective = 9      

100 

∴ P (A will not be defective) = 1- 9 
100 

 

= 
100 − 9 

100 

 

=
 91 

100 

Prob. that part B will be defective = 5    

100 

 

∴ P (A will not be defective) = 1-  5  

100 

 

= 
100 − 5 

100 

 

=
 95 

100 

 

∴ P (the assembled article will not be defective) = P (A will not be defective) × 

 

P (B will not be defective) 



= 
91 

100 
× 

95 

100 
 

= 0.86 

 

7. From a bag containing 4 white and 6 black balls, two balls are drawn at random. If the balls 
are drawn one after the other without replacement, find the probability that 

i) both balls are white. 

ii) both balls are black. 

iii) the first ball is white and the second ball is black. 

iv) one ball is white and the other is black. 

 

Sol: Total no. of balls = 4 + 6 = 10 

 

i) P (first ball is white) = 4    

10 
 

P (second ball is white) = 3 

9 
 

∴ P (both balls are white) = 4 × 
3
 

10 9 

 

=
 2 

15 
 

ii) P (first ball is black) = 6 
 

10 
 

P (second ball is black) = 5 

9 
 

∴ P (both balls are black) = 6 × 
5
 

10 9 

 

= 
1 

3 



× 

iii) P (first ball is white) = 4    

10 
 

P (second ball is black) = 6 

9 
 

∴ P (first ball is white & second ball is black) =  4 
 6

 

10 9 

 

=
 4 

15 

 
iv) a) P (first ball is white & second ball is black) = 4  

 

 
× 

 
 

6 

10  9 

= 
24 

  

90   

b) P (first ball is black & second ball is white) = 6 × 
4 

10  9 

= 
24 

  

90   

Hence both events (a) & (b) are mutually exclusive. 
  

 

∴ P (one ball is white & the other is black) = 24 

 

   

9 

+ 
24 

 

90 

 0   

=
 8 

1 

5 



× 

8. Find the probability in each of the below four cases, if the balls are drawn one after the other 
with replacement. A bag containing 4 white & 6 black balls, 2 balls are drawn at random. 

i) both balls are white. 

ii) both balls are black. 

iii) the first ball is white and the second ball is black. 

iv) one ball is white and the other is black. 

 

Sol: Total no. of balls = 4 + 6 = 10 

 

i) P (first ball is white) = 4     

10 

 
P (second ball is white) = 4     

10 

 

∴ P (both balls are white) = 4 × 
4    

 

10 10 

 

=
 4 

25 
 

ii) P (first ball is black) = 6 
 

10 
P (second ball is black) = 6 

10 
 

∴ P (both balls are black) = 6 × 
6    

 

10 10 

 

=
 9  

25 
 

iii) P (first ball is white) = 4 

10 
 

P (second ball is black) = 6     

10 

 

∴ P (first ball is white & second ball is black) =  4 
 6   

 

10 10 

 

=
 6 

25 
 

iv) P (first ball is white & second ball is black) = 4 × 
6
 

10 10 

 

= 
6 

25 



CONDITIONAL PROBABILITY: 
 

The conditional probability of event A, when the event B has already happened is 

defined as, 
 

𝑃 (𝐴⁄𝐵) = 
𝑃 (𝐴 

∩𝐵)
 

𝑃 (𝐵) 

, 𝑃 (𝐵) ≠ 0 (OR) 𝑃 (𝐴 ∩ 𝐵) = 𝑃 (𝐴⁄𝐵) . 𝑃 (𝐵) 

 

If A & B are mutually exclusive events then, 
 

 

 
PROBLEMS: 

𝑃 (𝐵⁄𝐴) = 
𝑃 (𝐴 

∩𝐵)
 

𝑃 (𝐴) 

, 𝑃 (𝐴) ≠ 0 



1. A bag contains 3 red & 4 white balls. Two draws are made without replacement. What is the 
prob. that both the balls are red. 

Sol: P (drawing a red ball in the first draw) = 3 

7 

i.e) P (A) = 3 

7 

P (drawing a red ball in the first draw given that first ball drawn is red) = 2 

6 

 

i.e) 𝑃 (𝐵⁄𝐴) = 2 
6 

∴ 𝑃 (𝐴 ∩ 𝐵) = 𝑃 (𝐵⁄𝐴) × 𝑃 (𝐴) 

 

=  
2   

× 
3 

6 7 

 

= 
1 

7 
 

2. Find the prob. of drawing a queen and a king from a pack of cards in two consecutive draws, 
the cards drawn not being replaced. 

Sol: P (drawing a queen card) = 4 52 

i.e) P (A) = 4 

52 

 
P (drawing a king after a queen has been drawn) = 4    

51 
 

i.e) 𝑃 (𝐵⁄𝐴) = 4 

51 
 

∴ 𝑃 (𝐴 ∩ 𝐵) = 𝑃 (𝐵⁄𝐴) × 𝑃 (𝐴) 

 

=   
4 

× 
4 

51 52 

 

= 
4  

663 

 

3. In a box there are 100 resistors having resistance and tolerance as shown in the following table. Let 

a resistor be selected from the box and assume each resistor has the same likelihood of being 

chosen. Define three events A as draw a 47𝛺 resistor, B as draw a resistor with 5% tolerance and 

C as draw a 100Ω resistor. Find 

𝑃 (𝐴⁄𝐵), 𝑃 (𝐴⁄𝐶), 𝑃 (𝐵⁄𝐶). 

 

Resistance Ω 5% 10% Total 



22 10 14 24 

47 28 16 44 

100 24 8 32 

Total 62 38 100 

 

 
Sol: P (A) = P (47Ω) = 44   

10 

0 

 
P (B) = P (5%) = 62   

100 



P (C) = P (100Ω) = 32 
100 

 

The joint probabilities are, 

 

P (A ∩ 𝐵) = P (47Ω ∩ 5%) 

 

=
 28 

100 

 

P (A ∩ 𝐶) = P (47Ω ∩ 100𝛺) 

 

= 0 

 

P (B ∩ 𝐶) = P (5% ∩ 100𝛺) 

 

=
 24 

100 
 

∴ 𝑃 (𝐴⁄𝐵) = 
𝑃 (𝐴 

∩𝐵)
 

𝑃 (𝐵) 

 

= 
28 

62 

= 
28⁄100 

62⁄100 

 

𝑃 (𝐴⁄𝐶) =   
𝑃 (𝐴 ∩𝐶) 

= 0  

𝑃 (𝐶) 32⁄100 

 

= 0 

 

𝑃 (𝐵⁄𝐶) = 
𝑃 (𝐵 ∩𝐶) 

= 
24⁄100 

𝑃 

= 
24 (𝐶) 

32 

32⁄100 

 

4. The Hindu newspaper publishes three columns entitled politics (A), books(B), cinema(C). 

Reading habits of a randomly selected reader with respect to three columns are, 

Read 

Regularly 

A B C A ∩ B A ∩ C B ∩ C A ∩ B ∩ C 

Probability 0.14 0.23 0.37 0.08 0.09 0.13 0.05 

Find P (A/B), P (A/B∪C), P (A/reads atleast one), P (A∪B /C). 

 

Sol: 𝑃 (𝐴⁄𝐵) = 
𝑃 (𝐴 ∩𝐵)

 

𝑃 (𝐵) 

 

=  
0.08 

0.23 

 

= 0.348 



 

P (𝐴⁄𝐵 ∪ 𝐶) = 
𝑃 [𝐴 ∩(𝐵 ∪𝐶)] 

𝑃 (𝐵 ∪𝐶) 

 

 

= 
0.04+0.05+0.03 

0.47 

 

= 0.255 

 

P (A / reads atleast one) = P [A / (A∪ 𝐵 ∪ 𝐶)] 

 

= 
𝑃 [𝐴∩(𝐴∪𝐵∪𝐶)] 

𝑃 (𝐴∪𝐵∪𝐶) 

 

=
 𝑃 (𝐴)  

𝑃 (𝐴∪𝐵∪𝐶) 
 

=  
0.14 

0.49 

 

= 0.286 

 

P (A ∪ 𝐵 / C) = 
𝑃 [(𝐴∪𝐵)∩𝐶] 

𝑃 (𝐶) 

 

= 
0.04+0.05+0.08 

0.37 

 

= 0.459 
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RandomVariablesand Probability Distributions 

 
 

Random Variables 

Suppose that to each point of a sample space we assign a number. We then have a function defined 

on the sam- ple space. This function is called a random variable (or stochastic variable) or more 

precisely a random func- tion (stochastic function). It is usually denoted by a capital letter such as X 

or Y. In general, a random variable has some specified physical, geometrical, or other significance. 

 

EXAMPLE 2.1 Suppose that a coin is tossed twice so that the sample space is S = {HH, HT, TH, 

TT}. Let X represent the number of heads that can come up. With each sample point we can 

associate a number for X as shown in Table 2-1. Thus, for example, in the case of HH (i.e., 2 

heads), X = 2 while for TH (1 head), X = 1. It follows that X is a random variable. 
Table 2-1 

 

Sample 

Point 

HH HT T 

H 

TT 

X 2 1 1 0 

 

It should be noted that many other random variables could also be defined on this sample 

space, for example, the square of the number of heads or the number of heads minus the 

number of tails. 

A random variable that takes on a finite or countably infinite number of values (see page 4) is 

called a dis- crete random variable while one which takes on a noncountably infinite number of 

values is called a nondiscrete random variable. 

 
Discrete Probability Distributions 

Let X be a discrete random variable, and suppose that the possible values that it can assume are   

given by x1, x2, x3, . . . , arranged in some order. Suppose also that these values are assumed with 

probabilities given by 

P(X = xk) = f (xk) k = 1, 2, . . . (1) 

It is convenient to introduce the probability function, also referred to as probability distribution, given 

by 

P(X = x) = f (x) (2) 

For x = xk, this reduces to (1) while for other values of x, f (x) = 0. 

In general, f (x) is a probability function if 

1. f (x) Š 0 

2. f (x) = 1 

ax 
where the sum in 2 is taken over all possible values of x. 
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EXAMPLE 2.2 Find the probability function corresponding to the random variable X of 

Example 2.1. Assuming that the coin is fair, we have 

P(HH ) = P(HT ) = P(TH ) = P(T T ) = 
1

 

 
 

The 

n 

1 
4 

1 4 
1 

4 4 

P(X = 0) = P(TT) = 
1

 
4 

P(X = 1) = P(HT < TH ) = P(HT ) + P(TH ) = 
1 

+ 

 
1 

= 
1 

4 4 2 
P(X = 2) = P(HH) = 

1 4 

 

The probability function is thus given by 

Table 2-2. Table 2-2 

 

x 0 

> 

1 

> 

2 

> 

f 
(x) 

1 
4 

1 
2 

1 4 

 

Distribution Functions for Random Variables 

   The cumulative distribution function, or briefly the distribution function, for a random variable X is 

defined by 

F(x) = P(X Š x) (3) 

where x is any real number, i.e., —` < x < `. 

The distribution function F(x) has the following properties: 

1. F(x) is nondecreasing [i.e., F(x) Š F(y) if x Š y]. 

2. lim F(x) = 0; lim F(x) = 1. 

xS—` xS` 

3. F(x) is continuous from the right [i.e., lim F(x + h) = F(x) for all x]. 

hS0+ 

Distribution Functions for Discrete Random Variables 

The distribution function for a discrete random variable X can be obtained from its probability function 

by noting that, for all x in (—`, ̀ ), 

F(x) = P(X Š  x) = f (u) 

uaŠ 
x 

where the sum is taken over all values u taken on by X for which u Š x. 

If X takes on only a finite number of values x1, x2, . . . , xn, then the distribution function is 

given by 

(4) 

0 —` < x < x1 

f (x1) x1 Š x < x2 

F(x) = e f (x1) + f (x2) x2 Š x < x3 

( ( 

f (x1) + c+ f (xn) xn Š x < ` 

 

 
(5) 

 

EXAMPLE 2.3 (a) Find the distribution function for the random variable X of Example 2.2. (b) 

Obtain its graph. 
function is 

(a) The distribution 
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1 

0 Š x < 1 
d 

 

 

4 

F(x) = 0 —` < x < 0 

4 
3 

1  Š x  < 2 

1 2  Š x < ` 
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(b) The graph of F(x) is shown in Fig. 2-1. 

 

Fig. 2-1 

 
 

The following things about the above distribution function, which are true in general, should be noted. 

1. The magnitudes of the jumps at 0, 1, 2 are 1, 1, 1 which are precisely the probabilities in Table 2-2. 

This fact 
 

4 2 4 
enables one to obtain the probability function from the distribution function. 

2. Because of the appearance of the graph of Fig. 2-1, it is often called a staircase function or step 

function. The value of the function at an integer is obtained from the higher step; thus the value at 

1 is 3 and not 1. This 
4 4 

is expressed mathematically by stating that the distribution function is continuous from the right at 0, 

1, 2. 

3. As we proceed from left to right (i.e. going upstairs), the distribution function either remains the 

same or increases, taking on values from 0 to 1. Because of this, it is said to be a monotonically 

increasing function. 

It is clear from the above remarks and the properties of distribution functions that the probability 

function of a discrete random variable can be obtained from the distribution function by noting that 
 

f (x) = F(x) — lim 

F(u). 

(6) 

uSx— 
 
 

Continuous Random Variables 

A nondiscrete random variable X is said to be absolutely continuous, or simply continuous, if its  

distribution func- tion may be represented as 
 

x 
F(x) = P(X Š x) =3 

 
f (u) du (—` < x < `) (7) 

—` 
 

where the function f (x) has the properties 

1. f (x) Š 0 

` 

2. 3 f (x)dx = 1 

—` 
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It follows from the above that if X is a continuous random variable, then the probability that X 

takes on any one particular value is zero, whereas the interval probability that X lies between two 

different values, say, a and b, is given by 
 

 
P(a < X < b) = 

b 

3f (x) dx 
a 

 
(8) 
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x 

3 3 

9 

 

 

EXAMPLE 2.4 If an individual is selected at random from a large group of adult males, the 

probability that his height X is precisely 68 inches (i.e., 68.000 . . . inches) would be zero. 

However, there is a probability greater than zero than X is between 67.000 . . . inches and 68.500 

. . . inches, for example. 

A function f (x) that satisfies the above requirements is called a probability function or probability 

distribu- tion for a continuous random variable, but it is more often called a probability density 

function or simply den- sity function. Any function f (x) satisfying Properties 1 and 2 above will 

automatically be a density function, and required probabilities can then be obtained from (8). 

 

f (x) = 
cx2   0 < x <  3 

EXAMPLE 2.5 (a) Find the constant c such thabt the function 
0 otherwise 

cx3 
2 

3
 

is a density function, and (b) compute P(1 < X < 2). 
 

 
 

` 3 

2 

(a) Since f (x) satisfies Property 1 if c Š 0, it must satisfy Property 2 in order to be a density 

function. Now 

3 f (.x)dx = 3 cx  dx =  
38 = 9c 

(b) 
—` 21 2

 

9 
x3 2 0 

1 7 

and since this must equal 1, we have c = 
1>9 

1   1          
 

In case f (x) is continuous, which we shall assume unless otherwise stated, the probability that X is 

P(1 < X < 2) = 3 dx = 2       = — = equal 

to any particular value is zero. In such case we can re2p7lace ei2th7er o2r7both27of the signs < in (8) by Š. 

Thus,  in 

Example 2.5, 

P(1 Š X Š 2) = P(1 Š X < 2) = P(1 < X Š 2) = P(1 < X < 2) = 
7
 

27 

EXAMPLE 2.6 (a) Find the distribution function for the random variable of Example 2.5. (b) Use 

the result of (a) to 

find P(1 < x Š 2). 

(a) We have  

F(x) = P(X Š x) = 

3 

x f (u) du 

—` 
If x < 0, then F(x) = 0. If 0 Š x < 3, then 

F(x) = 
x  

f (u) du = 
x 

1 
u2 du = 

x3
 

If x Š 3, 

then 
0 0 9 27 

F(x) = 3 x 3 1 x f (u) du + f (u) du = u2 du + 0 du = 1 
3 3 3 3 

0 
3 0 3 

 

Thus the required distribution function is 

 

 
F(x) = 

 
0 x < 0 

• > 
x1

3   27 0 Š x <x 3Š  3 

Note that F(x) increases monotonically from 0 to 1 as is required for a distribution function. It  

0 
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should also be noted 

that F(x) in this case is continuous. 
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3 (12) 

 

 

(b) We have 

 

 

 

 

as in Example 

2.5. 

 
 

P(1 < X Š 2) 5 P(X Š 2) — P(X Š 1) 

5 F(2) — F(1) 

5 2
3 

— 1
3 

= 7 

27 27 27 

The probability that X is between x and x + Ax is given by 
x +Ax 

P(x Š X Š x + Ax) = 

3x 
so that if Ax is small, we have approximately 

f (u) du (9) 

P(x Š X Š x + Ax) = f (x)Ax 

We also see from (7) on differentiating both sides that 
dF(x) 

dx 
= f (x) 

 

(10) 

 

 

(11) 
 

at all points where f (x) is continuous; i.e., the derivative of the distribution function is the density 

function. 

It should be pointed out that random variables exist that are neither discrete nor continuous. It can 

be shown that the random variable X with the following distribution function is an example. 
0 x <1 

μ 2    
1 Š x < 2 

F(x) = x 

 

1 x Š 2 

In order to obtain (11), we used the basic property 

 

d 
x 

f (u) du = f (x) 

dx  a 

 

which is one version of the Fundamental Theorem of Calculus. 

 
 

Graphical Interpretations 

If f (x) is the density function for a random variable X, then we can represent y = f (x) graphically by a 

curve as in Fig. 2-2. Since f (x) Š 0, the curve cannot fall below the x axis. The entire area bounded 

by the curve and the x axis must be 1 because of Property 2 on page 36. Geometrically the 

probability that X is between a and b, i.e., P(a < X < b), is then represented by the area shown 

shaded, in Fig. 2-2. 

The distribution function F(x) = P(X Š x) is a monotonically increasing function which increases 

from 0 to 1 and is represented by a curve as in Fig. 2-3. 
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Fig. 2-2 Fig. 2-3 
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Joint Distributions 

The above ideas are easily generalized to two or more random variables. We consider the typical case 

of two ran- dom variables that are either both discrete or both continuous. In cases where one variable 

is discrete and the other continuous, appropriate modifications are easily made. Generalizations to 

more than two variables can also be made. 

1. DISCRETE CASE. If X and Y are two discrete random variables, we define the joint 

probability func- tion of X and Y by 

P(X = x, Y = y) = f (x, y) (13) 
where 1. f (x, y) Š 0 

2. f (x, y) = 1 

ax  ay 
i.e., the sum over all values of x and y is 1. 

Suppose that X can assume any one of m values x1, x2, . . . , xm and Y can assume any one of n values 

y1, y2, . . . , yn. 

Then the probability of the event that X = xj and Y = yk is given by 

P(X = xj, Y = yk) = f (xj, yk) (14) 

A joint probability function for X and Y can be represented by a joint probability table as in 

Table 2-3. The probability that X = xj is obtained by adding all entries in the row corresponding to 

xi and is given by 

n   f (x , y (15) 

P(X = x ) = f (x ) = a ) 

j 1 j  j k 

k=1 

 
 

Table 2- 
 

 

 

 

 

 

 

 
d Grand Total 

 

 

 

 

 

For j = 1, 2, . . . , m, these are indicated by the entry totals in the extreme right-hand column or margin of 

Table 2-3. Similarly the probability that Y = yk is obtained by adding all entries in the column 

corresponding to yk and is given by 

m 
P(Y = y ) = f ( y ) = a 

 

f (x , y 

) 

(16) 

k 2 k  j k 

j=1 

For k = 1, 2, . . . , n, these are indicated by the entry totals in the bottom row or margin of Table 2-3. 

Because the probabilities (15) and (16) are obtained from the margins of the table, we often 

Y 

X 

 

y1 

 

y2 

3 

c 
 

yn 

 

Totals 
T 

x1 f (x1, y1) f (x1, y2) c f (x1, yn) f1 (x1) 

x2 f (x2, y1) f (x2, y2) c f (x2, yn) f1 (x2) 

 

( 
 

( 
 

( 
  

( 
 

( 

xm f (xm, y1 ) f (xm, y2 ) c f (xm, yn) f1 (xm) 

Totals S f2 (y1 ) f2 (y2 ) c f2 (yn) 1 
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refer to 

f1(xj) and f2(yk) [or simply f1(x) and f2(y)] as the marginal probability functions of X and Y, 

respectively. 



45 CHAPTER 2 Random Variables and Probability Distributions 
 

 

 
It should also be noted m n 

that a f (x ) = 1 a f (y ) = 1  
(17) 

 

which can be 

written 

1 j 

j=1 

 

m n 

2 k 

k=1 

a a f (x , y ) = 

1 

(18) 

j k 

j=1 k=1 

This is simply the statement that the total probability of all entries is 1. The grand total of 1 is 

indicated in the lower right-hand corner of the table. 

The joint distribution function of X and Y is defined by 
F(x, y) = P(X Š x, Y Šy) = 

a 
a f (u, 

v) (19) 

uŠ x vŠ y 

In Table 2-3, F(x, y) is the sum of all entries for which xj Š x and yk Š y. 

2. CONTINUOUS CASE. The case where both variables are continuous is obtained easily by 

analogy with the discrete case on replacing sums by integrals. Thus the joint probability function 

for the random vari- ables X and Y (or, as it is more commonly called, the joint density function of 

X and Y ) is defined by 

1. f (x, y) Š 0 
`  ̀

2. 
3 3

 
 

f (x, y) dx dy = 1 

—` —` 

Graphically z = f (x, y) represents a surface, called the probability surface, as indicated in Fig. 2-4. The 

total vol- ume bounded by this surface and the xy plane is equal to 1 in accordance with Property 2 

above. The probability that X lies between a and b while Y lies between c and d is given graphically by 

the shaded volume of Fig. 2-4 and mathematically by 

P(a < X < b, c < Y < d ) = 
b d 

x
3
= a 

3
y 

= c 

f (x, y) dx 

dy 

(20) 

 

 

 
Fig. 2-4 

 

More generally, if A represents any event, there will be a region 5A of the xy plane that corresponds to 

it. In such case we can find the probability of A by performing the integration over 5A, i.e., 

P(A) = 33 f (x, y) dx dy 

5A 

The joint distribution function of X and Y in this case is 

defined by 

(21) 
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x y 
F(x, y) = P(X Š x, Y Š y)3= 

3
 
 

f (u, v) du 
 

(22) 

u =—`  v= dv 

—` 
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It follows in analogy with (11), page 38, 

that '2F 

'x 'y 

 
 

= f (x, y) 

 

 

(23) 
 

i.e., the density function is obtained by differentiating the distribution function with respect to x and y. 

From (22) we obtain 
 

 
P(X Š  x) = F1(x) =3 

x ` 

3 
u v= 
=—` —  ̀

 
f (u, v) du 

dv f (u, v) 

dudv 

 
(24) 

3 3 
` y 

P(Y Š y) = F2( y) = 

(25) 

u v= 
=—`  —` 

We call (24) and (25) the marginal distribution functions, or simply the distribution functions, of X and 

Y, respec- 

tively. The derivatives of (24) and (25) with respect to x and y are then called the marginal density 

functions, or simply the density functions, of X and Y and are given by 
 

` 
f1(x) = 3 

` 
f (x, v) dv f2( y) = 3 

 
f (u, y) 

 
(26) 

v=—` u =—` du 
 

Independent Random Variables 

Suppose that X and Y are discrete random variables. If the events X = x and Y = y are independent  

events for all 
x and y, then we say that X and Y are independent random variables. In such case, 

P(X = x, Y = y) = P(X = x)P(Y = y) (27) 
 

or 

equivalently 

f (x, y) = f1(x) f2(y) (28) 

Conversely, if for all x and y the joint probability function f (x, y) can be expressed as the product of 

a function of x alone and a function of y alone (which are then the marginal probability functions of 

X and Y), X and Y are independent. If, however, f (x, y) cannot be so expressed, then X and Y are 

dependent. 

If X and Y are continuous random variables, we say that they are independent  random variables if 

the events 
X Š x and Y Š y are independent events for all x and y. In such case we can write 

P(X Š x, Y Š y) = P(X Š x)P(Y Š y) (29) 

 

or 

equivalently F(x, y) = F1(x)F2( y) (30) 

 

where F1(z) and F2(y) are the (marginal) distribution functions of X and Y, respectively. Conversely, 

X and Y are independent random variables if for all x and y, their joint distribution function F(x, y) can 

be expressed as a prod- uct of a function of x alone and a function of y alone (which are the marginal 

distributions of X and Y, respec- tively). If, however, F(x, y) cannot be so expressed, then X and Y 

are dependent. 

For continuous independent random variables, it is also true that the joint density function f (x, y) is 

the prod- uct of a function of x alone, f1(x), and a function of y alone, f2( y), and these are the 
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(marginal) density functions of X and Y, respectively. 

 

Change of Variables 

Given the probability distributions of one or more random variables, we are often interested in 

finding distribu- tions of other random variables that depend on them in some specified manner. 

Procedures for obtaining these distributions are presented in the following theorems for the case of 

discrete and continuous variables. 
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)|du dv| 

 

 

1. DISCRETE VARIABLES 

Theorem 2-1 Let X be a discrete random variable whose probability function is f (x). Suppose that a 

discrete random variable U is defined in terms of X by U = Ø(X), where to each value 

of X there corre- sponds one and only one value of U and conversely, so that X = $(U). 
Then the probability func- tion for U is given by 

g(u) = f [$(u)] (31) 

 

Theorem 2-2 Let X and Y be discrete random variables having joint probability function f (x, y). 

Suppose that two discrete random variables U and V are defined in terms of X and Y 

by U = Ø1(X, Y), V = Ø2 (X, Y), where to each pair of values of X and Y there 

corresponds one and only one pair of val- ues of U and V and conversely, so that X = 

$1(U, V ), Y = $2(U, V). Then the joint probability function of U and V is given by 

g(u, v) = f[$1(u, v), $2(u, v)] (32) 

2. CONTINUOUS VARIABLES 

Theorem 2-3 Let X be a continuous random variable with probability density f (x). Let us define U 

= Ø(X) where X = $(U ) as in Theorem 2-1. Then the probability density of U is given 

by g(u) where 

 

dx 

g(u)2 | du2 | = f (x)| dx | (33) 
or g(u) = f (x) 

du 
= f [c (u)]Z cr(u)Z (34) 

 

Theorem 2-4 Let X and Y be continuous random variables having joint density function f (x, y). Let 

us define 

U = Ø1(X, Y ), V = Ø2(X, Y ) where X = $1(U, V ), Y = $2(U, V ) as in Theorem 2-2. Then the 

joint density function of U and V is given by g(u, v) where 

or g(u, v)  =  fg(x(u, ,yv) 2 
 '(x, y) 

=2  =f (fx[,cy)(| dux, vd)y,| c (u, v)]ZJ Z (35) 

 

 
In (36) the Jacobian determinant, or briefly Jacobian, is given by 

'(u, v) 1 2 

J =
 '(x, y) 

= ∞ 
'u 'v 

∞
 

(36) 

'(u, v) 'x 'x 

 

'y 'y 

'u 'v 

(37) 

Probability Distributions of Functions of Random Variables 

Theorems 2-2 and 2-4 specifically involve joint probability functions of two random variables. In 

practice one often needs to find the probability distribution of some specified function of several 

random variables. Either of the following theorems is often useful for this purpose. 

Theorem 2-5 Let X and Y be continuous random variables and let U = Ø1(X, Y ), V = X (the second 

choice is arbitrary). Then the density function for U is the marginal density obtained 

from the joint den- sity of U and V as found in Theorem 2-4. A similar result holds for 

probability functions of dis- crete variables. 

Theorem 2-6 Let f (x, y) be the joint density function of X and Y. Then the density function g(u) of 

the random variable U = Ø1(X, Y ) is found by differentiating with respect to u the 

distribution 
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function given 

by 

 

G(u) = P[f1 (X, Y ) Š u] =  6 f (x, y) dx 

dy 

5 (38) 

Where 5 is the region for which Ø1(x, y) Š u. 

Convolutions 

As a particular consequence of the above theorems, we can show (see Problem 2.23) that the density 

function of the sum of two continuous random variables X and Y, i.e., of U = X + Y, having joint 

density function f (x, y) is given by 
` 

g(u) = 
3

 
 

f (x, u — x) 
 

(39) 

—` dx 

In the special case where X and Y are independent, f (x, y) = f1 (x) f2 (y), and (39) reduces to 
` 

g(u) =
3
 f1(x) f2 (u — (40) 

—` x) dx 

which is called the convolution of f1 and f2, abbreviated, f1 * f2. 

The following are some important properties of the convolution: 

1. f1 * f2 = f2 * f1 

2. f1 *( f2 * f3) = ( f1 * f2) * f3 

3. f1 *( f2 + f3) = f1 * f2 + f1 * f3 

These results show that f1, f2, f3 obey the commutative, associative, and distributive laws of algebra 

with respect to the operation of convolution. 
 

Conditional Distributions 

We already know that if P(A) > 
 

P(B  A) 
P(A ¨ B) 

0, 
u = P(A) 

 

(41) 

If X and Y are discrete random variables and we have the events (A: X = x), (B: Y = y), then (41) 

becomes 

f (x, y) 

P(Y = y u X = x) = f1(x 

) 

 

(42) 

where f (x, y) = P(X = x, Y = y) is the joint probability function and f1 (x) is the marginal probability 

function for X. We define 

 

f ( y u x) ; 

f (x, 

  y)  

f1(x) 

 

(43) 

and call it the conditional probability function of Y given X. Similarly, the conditional probability 

function of X 
given Y is 

 

f (x u y) ; 

f (x, 

  y)  

f2( 

y) 

 

(44) 

We shall sometimes denote f (x u y) and f ( y u x) by f1 (x u y) and f2 ( y u x), respectively. 

These ideas are easily extended to the case where X, Y are continuous random variables. For 

example, the con- 

ditional density function of Y given X is 
f (x, 

f ( y u x) ; y)  
f1(x) 
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(45) 
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where f (x, y) is the joint density function of X and Y, and f1 (x) is the marginal density function of X. 

Using (45) we can, for example, find that the probability of Y being between c and d given that x < X 
< x + dx is 

 

 
P(c < Y < d u x < X < x + dx) = 

d 
f3( y u x) dy 

c 

 
(46) 

 

Generalizations of these results are also available. 

 

Applications to Geometric Probability 

Various problems in probability arise from geometric considerations or have geometric 

interpretations. For ex- ample, suppose that we have a target in the form of a plane region of area K 

and a portion of it with area K1, as in Fig. 2-5. Then it is reasonable to suppose that the probability 

of hitting the region of area K1 is proportional to K1. We thus define 

 

 

Fig. 2-5 

 
 

P(hitting region of area K ) = 

K1 (47) 

 

1 K 

where it is assumed that the probability of hitting the target is 1. Other assumptions can of course be 

made. For example, there could be less probability of hitting outer areas. The type of assumption 

used defines the proba- bility distribution function. 
 
 

  SOLVED PROBLEMS  

 

Discrete random variables and probability distributions 

2.1. Suppose that a pair of fair dice are to be tossed, and let the random variable X denote the sum of the points. 

Obtain the probability distribution 

for X. 

>36. 

The sample points for tosses of a pair of dice are given in Fig. 1-9, page 14. The random 

variable X is the sum of > 

the coordinates for each point. Thus for (3, 2) we have X = 5. Using the fact that all 36 sample 

points are equally 

probable, so that each sample point has probability 1 36, we obtain Table 2-4. For example, 

corresponding to X = 5, 
we have the sample points (1, 4), (2, 3), (3, 2), (4, 1), so that the associated probability is 4 

Tab e 2-4 
 

x 2 3 4 5 6 
l 
7 8 9 10 11 12 
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( ( 

1 

Q 

 

 

Find the probability distribution of boys and girls in families with 3 children, assuming equal 

probabilities for boys and girls. 

Problem 1.37 treated the case of n mutually independent trials, where each trial had just two 

possible outcomes, 

A and A', with respective probabilities p and q = 1 — p. It was found that the probability of 

getting exactly x A’s 
 

in the n trials is nCx px qn—x. This result applies to the present problem, under the assumption that successive births 

(the “trials”) are independent as far as the sex of the child is concerned. Thus, with A being the event “a boy,” n = 3, 

and p = q = 1, we have 
 

2 Q   R Q  R Q R 
P(exactly x P(X x) = 3 

x 
1 

x
 1  3—=x  3     x  3 

 

boys) = = C   
2 C 

2 2 

where the random variable X represents the number of boys in the family. (Note that X is defined on the 

sample space of 3 trials.) The probability function for X, 

f (x) 
1  3

 

R 

C 

is displayed in Table 

2-5. 

= 3 x 2 

 

 
x 0 1 

> 

2 

> 

3 

> 

 8 3 8 3 8 1 8 
 

Discrete distribution functions 

(a) Find the distribution function F(x) for the random variable X of Problem 2.1, and (b) graph 

this distri- bution function. 

(a) We have F(x) = P(X Š x) = guŠx f (u). Then from the results of Problem 2.1, we find 

36 2  Š x  < 3 

03 — 3̀ <Š xx<<24 

 

 

 

 

(b) See Fig. 2-6. 

F(x) = 6 36 4 Š x < 5 
1> 

>36 

g3
>
5 36 11 Š x < 12 

1 12 Š x < ` 

> 

 

 
Fig. 2-6 
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(a) Find the distribution function F(x) for the random variable X of Problem 2.2, and (b) graph 

this distri- bution function. 
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4 = 

p 

[tan x — tan (—u`)+] =1 

—` 

6 

+ 

 

 
(a) Using Table 2-5 from Problem 2.2, we 

obtain 

 
 

3 Š x < ` 

 

e 1> 

1> 

F(x) = 0 —` <  x  < 0 

8 0  Š x  < 1 

1 2 1  Š x  < 2 

7 8 2  Š x  < 3 
(b) The graph of the distribution function of (a) is shown in Fig. 2-7. 

Fig. 2-7 

Continuous random variables and probability distributions 

(x + 1), where —` < x < `. (a) Find the value of 

the constant c. (b) Find the probability that X2 lies betwe3eannd1 1. 

` 

(a) Wsoe mthuastt hca=ve13 

3 
—` 

f (x) dx =31, i.e., 
3 

P B ¢ ≤R 
3 

  `  dxc dx 1  1    dx `  2   1 p  dx p 

1 
— 3

—

 
x2  + 1  

= c tan—1 x = c 
2 
— — 

2 
= 1 

p x2 + 1 
+ p 3 x2 + 1 

= p x2 + 1 ¢ 
2 

≤R 

> G. 

> 

! 3 
!3>3 

(b) If
 1 

Š X2 Š 1, then either
 23 

Š X Š 1 or —1 Š X Š — 
23

. Thus the required probability is 

2.5. A random variable X has the density functionBf (x) = c> 2 

3  !3> 
—1 

3 3 =  
2
p¢ 

p >— 
p

≤ 
1
 

 
 

F(x)
=
= 13 f (—u1

) du = p3—1 2 =1 p B6 tan
—1

 
 

u 
—p̀ 

R  3 
 

2.6. Find the distribution function corresponding to the density func
B
tio

t
n
an

of P
x
ro

+
blem

R
23.5. 

p 2 p—1 —12 

= p   tan (1) — tan 
x 

1 
x 

—` —` 

du  

1 
—1 Z 

 
 

 

 

1  1 
tan —1 x 

2 

x 

= 

` 
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0 

 

 

The distribution function for a random variable X is 

 

F(x) = 
1e— e—2x x   Š  0 

0 x   < 0 

Find (a) the density function, (b) the probability that X > 2, and (c) the probability that —3 < X 

Š 4. 

(a) f (x)  =  
 d  

F(x)  = e 
2e x > 0

 
—2x 

dx 0 x < 0 

 

 
(b)  

 

Another 

method 

 
P(X > 2) = 

3` P
` 

2e—2u du = —e—2u 2 = e—4 

2 

By definition, P(X Š 2) = F(2) = 1 — e—4. Hence, 

P(X > 2) = 1 — (1 — e—4) = e—4 

0 4 

(c)  

 

 

 

 

 
Another method 

4 3 3 3 
P(—3 < X Š 4) = 

f (u) du = 0 du + 2e—2u du 

—3 —3 0 

= —e—2u Z 4  
= 1 — e—8 

 
P(—3 < X Š 4) = P(X Š 4) — P(X Š —3) 

= F(4) — F(—3) 

= (1 — e—8) — (0) = 1 — e—8 
 

Joint distributions and independent variables 

The joint probability function of two discrete random variables X and Y is given by f (x, y) = c (2x + y), where 
x and y can assume all integers such that 0 Š x Š 2, 0 Š y Š 3, and f (x, y) = 0 otherwise. 

(a) Find the value of the constant c. (c) Find P(X Š 1, Y Š 2). 

(b) Find P(X = 2, Y = 1). 

(a) The sample points (x, y) for which probabilities are different from zero are indicated in Fig. 2-8. The 

probabilities associated with these points, given by c(2x + y), are shown in Table 2-6. Since the grand total, 

42c, must equal 1, we have c = 1> 42. 

Table 2-6 

  
see that 

(b) From Table 2-6 we 

X 
Y 0 1 2 3 Totals 

T 

0 0 c 2c 3c 6c 

 

1 
 

2c 
 

3c 
 

4c 
 

5c 
 

14c 

 

2 
 

4c 
 

5c 
 

6c 
 

7c 
 

22c 

Totals S 6c 9c 12c 15c 42c 
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P(X = 2, Y = 1) = 5c +
 5

 

42 

Fig. 2- 

8 



58 CHAPTER 2 Random Variables and Probability Distributions 
 

 

 

(c) From Table 2-6 we see that 

 
P(X Š 1, Y Š 2) = a a f (x, y) 

xŠ1 yŠ2 
= (2c + 3c + 4c)(4c + 5c + 6c) 

= 24c = 
24 

= 
4
 

42 7 

 

as indicated by the entries shown shaded in the table. 

2.9. Find the marginal probability functions (a) of X and (b) of Y for the random variables of Problem 2.8. 
 

(a) The marginal probability function for X is given by P(X = x) = f>1(x) and can be obtained from the margin 

totals•in the right>-hand column of Table 2-6. From these we see that 

 

 
 

Chec 

k: 

 
1  + 1 

7 3 

 
+ 11 

2 
1 

P(X = x) = f1 (x) = 

= 1 

164cc == 11  73 xx ==  10 

22c = 11 

>21 x = 2 

(b) The marginal probability function for Y is given by P(Y = y) = f2(y) and can be obtained from the margin 

totals in the last row of Table 2-6. From these we see that 
 

μ 
12c = 2>7 y = 2 

 

 

Chec 

 
1 + 3 + 2 + 5 

P(Y = y) = f2( y) = 

 

= 1 

6c  = 1 7 y  = 0 
9c  = 3  14    y  = 1 

15c = 5>  14    y  = 3 

k:    

7 14 7 14 

Show that the random variables X and Y of Problem 2.8 are dependent. 

If the random variables X and Y are independent, then we must have, for all x and y, 

P(X = x, Y = y) = P(X = x)P(Y = y) 

But, as seen from Problems 2.8(b) and 2.9, 

 

P(X = 2, Y = 1) =
 5 

P(X = 2) = 
11 

P(Y = 1) =
 3 

 
42 21 14 

 

so that P(X = 2, Y = 1) 2 P(X = 2)P(Y = 1) 
 

The result also follows from the fact that the joint probability function (2x + y)> 42 cannot be expressed as 

function of  x alone times a function  of y alone. a 

The joint density function of two continuous random variables X and Y is 
 

 

f (x, y) = 
cxy 0 < x < 4, 1 < y < 5 

e 
0 otherwise 

(a) Find the value of the constant c. (c) Find P(X Š 3, Y Š 

2). (b) Find P(1 < X < 2, 2 < Y < 3). 
(a) We must have the total probability equal to 1, i.e., 

` ` 

3 3 f (x, y) dx dy = 1 
—` 
—` 
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2 

3 

3 

5 

R    

xy dy  dx 

 
 

Using the definition of f(x, y), the integral has the value 

 
4 5 4 

3 3 3 B 3 
x = 

4 

 
x = 0 

25x x 

0    y = 1 x = 0 

cxy dxdy = c 
4 

 

 
= c 34 

= c 

z = 0    

2 dx = c 3 ¢ 
2 

— 
2 

≤ dx 
xy2 5 

x = 0 

 

3 

y=1 

 

12x dx = c(6x2)
2
 

 
 

4 

 
x=0 

 
= 96c 

(b) Using the value of c found in (a), we have 

Then 96c = 1 and c >96. B3 R  1  xy2 
2 

3 
= 1 

P(1 < X < 

 
2, 2 < Y < 

 
3) = 

=2   1   
2
 

3 

3 
3 xy 

3 

2 

dx dy3 

96 xy dy dx = 
96 5 

1 x = 1 y = 2   x = 1  
=   y = 2    x2 

2    
dx 

x 4= 12 956x 5 a 2 
y=2 

P(X Š 3, Y Š 2) = 936 3 2  
dx = 192 2 1 

x = 
x = 1 xy 

dx dyb 2 = 
128 

 
(c)  

 1 4 
396 

 

2    

3y = 1926 

 

1     
4 

x = 3 3 xy dy dx =  
96 3x = 3 x2y2  2     

dx 

= 1 
4
 

y = 1 R 
B 

2y=1 

3 3x dx = 7 

96 x=3 2 128 

Find the marginal distribution functions (a) of X and (b) of Y for Problem 2.11. 

(a) The marginal distribution function for X if 0 Š x < 4 is 

 
x ` 

F1(x) = P(X Š  x) =3  3
 f (u, v) dudv 

5 

= 3x 3 

u =—` v= 

—` 

uv 
dudv 

 

x2 
3 

1 x 5 

= 3 B R    

u = 0 v= 1 96 

96 u = 0 v= uv dv du = 
16

 

1 
 

For x Š 4, F1(x) = 1; for x < 0, F1(x) = 

0. Thus 

• 

 
0 x < 0 

2> 

= 
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F1(x) =  x 16  0 Š x <4 

1 x Š 4 

 
As F1 (x) is continuous at x = 0 and x =y =41, we could replace < by Š in the above 

expression. 
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= = 

 

 

(b) The marginal distribution function for Y if 1 

Š y ™ 5 is 

F2( y) = P(Y Š y) = 
`3 y 

3 
u =—` v= 

1 

f (u, v) dudv 

u y2 — 1 
y 

v 
dudv = 

= 34 3v= 1 96 

 

u = 0 24 

For y Š 5, F2( y) = 1. For y < 1, F2( y) = 0. Thus 

2 •(0  y — 1)>24 1 Š yy  <<51 

F ( y) = 2
 

As F2( y) is continuous at y = 1 and 1y = 5, we could reyplŠac5e < by Š in the above 

expression. 
Find the joint distribution function for the random variables X, Y of Problem 2.11. 

From Problem 2.11 it is seen that the joint density function for X and Y can be written as the 

function of x alone and a function of y alone. In fact, f (x, y) = f1(x) f2( y), where 

product of a 
f (x) e 

c1x 0 < x < 4 
f ( y) e 

c2 y 1 < y < 5 
1 0 otherwise 2 0 otherwise 

 

1  2 >96. It follows that X and Y are independent, so that their joint distribution 
and cfcun=ctcio=n 1is given by 

F(x, y) = F1(x)F2( y). The marginal distributions F1(x) and F2( y) were determined in 

Problem 2.12, and Fig. 2-9 shows the resulting piecewise definition of F(x, y). 

In Problem 2.11 find P(X + Y < 3). 
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Fig. 2-9 

 

 

In Fig. 2-10 we have indicated the square region 0 < x < 4, 1 < y < 5 within which the 

joint density function of X and Y is different from zero. The required probability is given 

by 

P(X + Y < 3) = 6
5 f (x, y) dx dy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 



 

3 
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5 is the part of the square over which x + y < 3, shown shaded in Fig. 2-10. Since f (x, y) = xy 

 

over 5, this probability is given by 
>96 

2 

3x = 3 
0 

3 — x xy 

y= 1 96 
dxdy 

1   
2 3 — x 

B 3 
x = 0 y = 1 

xydy R dx x)2 — x] = 
1
 

48 

1   2 xy2 3—x 1 2 

= 
x=0 2 

2 
y=1 

dx = 3 
x = 0 

[x(3 —    

 

 
 

Change of variables 

Prove Theorem 2-1, page 42. 

The probability function for U is given by 

g(u) = P(U = u) = P[f(X) = u] = P[X = c(u)] = f [c(u)] 

In a similar manner Theorem 2-2, page 42, can be proved. 

Prove Theorem 2-3, page 42. 

Consider first the case where u = Ø(x) or x = $(u) is an increasing function, i.e., u 

increases as x increases (Fig. 2-11). There, as is clear from the figure, we have 

(1) P(u1 < U < u2) = P(x1 < X < x2) 

or 
u2 x2 

(2) 3 g(u) du = 3 f (x) dx 

u1 x1 

 

Fig. 2-11 

Fig. 2-10 

= 3 

96 192 

96 
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e 

 

 

Letting x = $(u) in the integral on the right, (2) can be written 

 
u2 u2 

3 g(u) du = 3 f [c (u)] cr(u) du 

u1 u1 

 

This can hold for all u1 and u2 only if the integrands are 

identical, i.e., 

g(u) = f [c(u)]cr(u) 

 

This is a special case of (34), page 42, where cr(u) > 0 (i.e., the slope is positive). For 

the case where cr(u) Š 0, i.e., u is a decreasing function of x, we can also show that (34) 

holds (see Problem 2.67). The theorem can also be proved if cr(u) Š 0 or cr(u) < 0. 
Prove Theorem 2-4, page 42. 

We suppose first that as x and y increase, u and v also increase. As in Problem 2.16 we 

can then show that 

 

P(u1 < U < u2, v1 < V < v2) = P(x1 < X < x2, y1 < Y < y2) 

u2   v2 x2 y2 

or 3 3 g(u, v) du dv = 3 3 f (x, y) dx dy 

v1 v1 x1 y1 

Letting x = $1 (u, v), y = $2(u, v) in the integral on the right, we have, by a theorem of 

advanced calculus, 
u2   v2 u2 v2 

3 3 g(u, v) du dv = 3 3 f [c1 (u, v), c2(u, v)]J du dv 

 
 

where 

 

is the Jacobian. 

Thus 

v1 u1 v1 
v1 

'(x, y) 

J =  
'(u, v) 

 

g(u, v) = f [c1(u, v), c2(u, v)]J 
 

which is (36), page 42, in the case where J > 0. Similarly, we can prove (36) for the case 

where J < 0. 

The probability function of a random variable X is 

 

f(x) =  
2—x x = 1, 2, 3, c 

0 otherwise 

 

Find the probability function for the random variable U = X4 + 1. 

Since U = X4 + 1, the relationship between the values u and x of the random variables U and 

X is given by 
 

u = x4  + 1 or x = u4 — 1, where u = 2, 17, 82, . . . and the real positive root is taken. Then 

the required 

 

probability function for U is 

given by 

—24 
 

2 u—1 u = 2, 17, 82, . . . 
0 otherwise 

using Theorem 2-1, page 42, or Problem 2.15. 

g(u) = e 
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f (x) x2> —3 < x < 6 

The probability function of a random variable X is given by 

=  e 81 

0 otherwise 

Find the probability density for the random variable 3U = 1 (12 — X ). 
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2u 

2 

2 

 

 

 
We have u = 1 (12 — x) or x = 12 — 3u. Thus to each value of x there is one and only one value of u and 

 

> 
3 

conversely. The values of u corresponding to x = —3 and x = 6 are u = 5 and u = 2, respectively. Since 

cr(u) = dx du = —3, it follows by Theorem 2-3, page 42, or Problem 2.16 that the density function for U is 

> 

g(u) =  e 
(12 — 3u)2  27 2 < u < 5 

0 otherwise 

 
5 (12 — 3u)2 (12 — 3u)3 5 

3 
Check: 

2 27 
du = — 

243 
= 1 

 

2.20. Find the probability density of the random variable U = X2 where X is the random variable of Problem 

2.19. 

We have u = x2 or x = ±! . Thus to each value of x there corresponds one and only one 

value of u, but to 
u 

each value of u 2 0 there correspond two values of x. The values of x for which —3 < x ™ 

6 correspond to values of u for which 0 Š u ™ 36 as shown in Fig. 2-12. 

As seen in this figure, the interval —3 < x Š 3 corresponds to 0 Š u Š 9 while 3 < x 

™ 6 corresponds to 9 < u ™ 36. In this case we cannot use Theorem 2-3 directly but 

can proceed as follows. The distribution function for U is 
 

G(u) = P(U Šu) 
 

Now if 0 Š u Š 9, 

we have 

 
G(u) = P( U Š u) = P(X2 Š u) = P(— u Š X Š u) 

! ! 

1 
 

u    f (x) dx 
= 3 1

 

— u 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2-12 
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But if 9 < u ™ 36, we have 
 

 

 

G(u)  =  P(U  Š  u)  =  P(—3  <  X  <  !u) =  3—3  
f (x) dx 
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u 

 

 
Since the density function g(u) is the derivative of G(u), we have, using (12), 

 
 

  

f (!u) +2f!(—u  !u) 

g(u)  = e u!) 
f ( 

!u 

0 

2 
 

Using the given definition of f (x), this b
!
eco

>
mes 

0 Š u Š 9 

 

9 < u < 36 

 
otherwise 

g(u) = • !u> 
81 0 Š  u  Š  9

 

9 36 

3 3 0 

162 2u93><2u < u336>2 
2 
36 

2 
9otherwise 

Chec 
!u !u 

du + 
 

 

    + 
243 

9 = 1
 

k: 0 81 

162 
du = 243 0 

If the random variables X and Y have joint9 density function 

f (x, y) = 
xy  96   0  < x  < 4, 1  < y < 5 

e 0 > otherwise 
(see Problem 2.11), find the density function of U = X + 2Y. 
Method 1 

Let u = x + 2y, v = x, the second relation being chosen arbitrarily. Then 
simultaneous so2lution yields x = v, y = 1 (u — v). Thus the region 0 < x < 4, 1 < y < 
5 corresponds to the region 0 < v ™ 4, 2 < u — v < 10 shown shaded in Fig. 2-13. 

 

The Jacobian is 

given by 

 

 

 

 

 

 

 

 

 
Fig. 2-13 

 
 

'x 'x 

J = 4   'u 'v 4 

 'y  'y 

'u 'v 

0 1 
=   1 1 

2 
—

2 

1 

= —2 
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1 

4 

 

Then by Theorem 2-4 the joint density function of U and V is 
 

g(u, v) =  e 
v(u — v)>384   2 < u — v < 10, 0 < v < 4 

0 otherwise 

 

The marginal density function of U is given by 

g3 
u — 2 v(u — v) 

3v= 0 384 dv 2 < u < 6 

v(u — v) 

g1(u) = 
 

v= 0 384 dv 6 < u < 10 
4 

3 
v= u —10 

v(u — 

v) 

384 

dv 10 < u < 14 

0 otherwise 
 

as seen by referring to the shaded regions I, II, III of Fig. 2-13. Carrying out the integrations, we find 
(u — 2)2(u + 4)> 

d 
> 

(348u  — u3 — 212283)0>42304 210<<uu<<614 

g (u) =   
(3u — 8) 144 6 < u <  10 

0 otherwise 

 
 

A check can be achieved by showing that the integral of g1 (u) is equal to 1. 

Method 2 

The distribution function of the random variable X + 2Y is given by 

P(X + 2Y Š u) = 6 f (x, y) dxdy = 
6 

xy 

96 dxdy 

x + 2y Š u x0 <+x <24y Šu 
(u — u — 2 x(u 

1 < y < 5 x R
 

 

For 2 < u < 6, we see by referring tox)F>igx. y2-14, that the last inteBgral equals 

— x)2 

 

 
 

u — 2 
3 3 

 
y = 1 

2 

96 dx dy = 3 
x = 0 

 
768 

— 
192 

 
>2304. In a similar manner we can obtain 

dx 

 

x = 0 

 

The derivative of this with respect to u is found to be (u — 2)2(u + 4) 

the result of Method 1 for 6 < u < 10, etc. 



 

Fig. 2-14 Fig. 2-15 



 

—1> > 
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Random Variables and Probability Distributions 

If the random variables X and Y have joint density function 

 

f (x, y) = e 
xy 96 0  < x  < 4, 1  < y < 5 

0  
> 

otherwise = u>v so that y = ux>v. This leads 

(see Problem 2.11), find the joint density function of U = XY 2, V =to
X2Y. 

Consider u = xy2, v = x2y. Dividing these equations, we obtain
>
y x 

2>3   > > > 
the simultaneous solution x = v 
given by 

 

 
which are equivalent to 

u —1 3, y = u23 v —1 3. The image of 0 < x < 4, 1 < y < 5 in the uv-plane is 

> > > > 
0 < v2  3u—1  3 < 4 1 < u2 3v—1 3 < 5 

 

 

v2 < 64u v < u2 < 125v 

This region is shown shaded in 

Fig. 2-15. 
 

The Jacobian is 

 
 
1   2

>
 

 
 

4 
3   —4>3 2  

 
1 —2>3 —2>3 

given by —3 v   u 3 v 3u—1 3 

4 
J = 

—1>3 —1> 

2 

> > 

1 
= —3 u v 

 
g(u, v) = c 

3 u v 3 —
3 

u2 3v—4 3 

Thus the joint density function of U and V is, by Theo(r3em 2-4, 

96 
(v2> 3u—1>3u)(u2>3v—1>3)   

1
 

3 v—2 3) v2 < 64u, v < u2 < 125v 

   —2> > 

 

0 otherwise 
 

 

288 v2 < 64u, v < u 2 < 125v 

or g(u, v) = e
0u—1>3 v—1>3o>therwise 

 

Convolutions 

Let X and Y be random variables having joint density function f (x, y). Prove that the density function of 

U = X + Y is 

 

 

Method 

1 

g(u) = 
` 
3 

f (v, u — v)dv 

—` 

 

Let U = X + Y, V = X, where we have arbitrarily added the second equation. Corresponding to these we have 

u = x + y, v = x or x = v, y = u — v. The Jac
'
o
x
bia

'
n
x 

of the transformation is given by 

'u 
'y        

J = 4 
'u 

'v 

'y 
'v  

4= 2 0 1 2  = —1 

1 —1 

 

Thus by Theorem 2-4, page 42, the joint density function of U and V is 

g(u, v) = f (v, u — v) 

It follows from (26), page 41, that the marginal density function of U is 
` 

g(u) =
3
 

—` 
f (v, u — v) dv 



 

 



 

3 

e dv = 6e (e — e 

CHAPTER 2 Random Variables and Probability Distributions 
 
 

Method 2 

The distribution function of U = X + Y is equal to the double integral of f (x, y) taken over 

the region defined by x + y Š u, i.e., 

G(u) = 6 
f (x, y) dx dy 

x +y Š u 

Since the region is below the line x + y = u, as indicated by the shading in Fig. 2-16, we see that 

` u — x 

G(u) = 3 B 3 f (x, y) dyRdx 
x =—` y =—` 

 

 

Fig. 2-16 

 

The density function of U is the derivative of G (u) with respect to u and is given by 
` 

g(u) =3 

—` 
f (x, u — x) dx 

using (12) first on the x integral and then on the y integral. 

Work Problem 2.23 if X and Y are independent random variables having density functions f1(x), 

f2( y), respectively. 

In this case the joint density function is f (x, y) = f 1(x) f2( y), so that by Problem 2.23 

the density function of U = X + Y is 

 
 

which is the convolution of 

f1 and f2. 

` 
g(u) = 3 

—` 

f1(v) f2(u — v)dv = f1 * f2 

If X and Y are independent random variables having density functions 

f (x) =  e 
2e—2xx Š 0

 

1 0 x < 0 

find the density function of their sum, U = X + Y. 

 

f 

(2y) 

e 
3e—3yy Š 0 

= 
0 y < 0 

By Problem 2.24 the required density function is the convolution of f1 and f2 and is given by 
` 

g(u) = f1 * f2 = 

—` 
f1(v) f2(u — v) dv 

In the integrand f1 vanishes when v < 0 and f2 vanishes when v > u. Hence 

g(u) = 
u 

(2e—2v)(3e—3(u—v)) dv 
3 
0 

= 6e—3u 
u 

v3 —3u u —2u 3u 

57 

— 1) = 6(e ) 
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0 



 

4 

CHAifPuTER 2  Random Variables and Probability Distributions 
Š 0 and g(u) = 0 if u <

` 
0. 

` 1 1
 

3 3 
¢ ≤ 

= 1
 

g(—ù) du =  6 (e—0   2u  —  e—3u) du =26   3— 
 

Chec 

k: 
 

2.26. Prove that f1 * f2 = f2 * f1 (Property 1, page 43). 
We have 

 

` 
f1 * f2 =3 

v=—` 

f1(v) f2(u — v) dv 

Letting w = u — v so that v = u — w, dv = —dw, we obtain 
—` f1(u — w) f2(w)(—dw) = 

f1  * f2 =  ̀

w
3  

=` 

 

3 

w =—` 

f2(w)f1(u — w) dw = f2 * f1 

 

Conditional 

distributions 

 
 

f (y u x) = 

           
f (x, y) 

f (x) 
=

 

  >  
(2x + y) 42 

f (x) 

Find (a) f ( y u 2), (b) P(Y = 1 u X = 2) for the distribution of Problem 2.8. 

(a) Using the results in Problems 2.8 and 2.9, we have 

f ( y u 2) = 
(4 + y) >42 

=
 4 + y  

111 21 1 22 252 

(b) so that with x = 2 P(Y = 1 u X = 2) = f (1 u 2) = 
If X and Y have the joint density function 

3 + xy 0 < x < 1, 0 < y < 1 
e > 

f (x, y) = 
0 otherwise 

 

find (a) f ( y u x), (b) P(Y > 1 u 1 < X < 1 + dx). 
   

 

 

2 2 

(a) For 0 < x < 1, 

and 

2 
f1(x) = 
3 

 
¢  ≤  

0 
 

   

4 4 2 

3 + 4xy 

• 3 + 2x 
f1(x) 

0 other y 

1 3 3 x 

+ xy dy = + 

f (x, y) 0  <  y  < 1 

f ( y u x) = = 

(b) For other values of x, f ( y u x) is not defined. 

P(Y > 2 u 2 < X < 2 + dx) = 31 
f ( y u 2) dy = 

3 

4 dy = 16 

1 1 1 `> 

e 1 

1>    3 + 2y  9 

2 1 
2 

The joint density function of the random variables X and Y is given by 

f (x, y) = 
8xy 0 Š x Š 1, 0 Š y Š x 

0 otherwise 

Find (a) the marginal density of X, (b) the marginal density of Y, (c) the conditional density of 

59 
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X, (d) the conditional density of Y. 

The region over which f (x, y) is different from zero is shown shaded in Fig. 2-17. 
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3 3 

3 3 3 3 

 

 

 
Fig. 2-17 

 

 

(a) To obtain the marginal density of X, we fix x and integrate with respect to y from 0 to x 

as indicated by the vertical strip in Fig. 2-17. The result is 

x     
f1(x) =3 

8xy dy = 4x 3 

y = 0 

 

for 0 < x < 1. For all other values of x, f1 

(x) = 0. 

(b) Similarly, the marginal density of Y is obtained by fixing y and integrating with respect to x 

from x = y to x = 1, as indicated by the horizontal strip in Fig. 2-17. The result is, for 0 

< y ™ 1, 

 

For all other values of y, f2 ( 

y) = 0. 

f2 ( y) =3 

1 

x = y 

 

8xy dx = 4y(1 — y2) 

 

 
> 

 

 
 

(c) The conditional density function of X is, for 0 < y <1, 
f (x u y) = f (x, y)=  e 2x  (1 — y2) y Š x Š 1 
1 f2(y) 0 other x 

The conditional density function is not defined when f2( y) = 0. 

(d) The conditional density function of Y is, for 0 < x ™ 1, 

f ( y u x) = 
f (x, y) 

=  e 
2y>x 2 0 Š y Š x 

2 f1(x) 0 other y 

The conditional density function is not defined when f1(x) = 0. 

 

Chec 

k: 

1 
f1(x) dx =   

1 
4x 3 dx = 1, 

1 
f2( y) dy = 

1 
4y(1 — y2) dy = 1 

0 0 0 0 

1 
f1(x u y) dx = 

1  2x 
dx = 1 

y y 1 — y2 

x x 2y 

3   f2( y u x) dy = 3 dy = 1 

0 0 x2 
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Determine whether the random variables of Problem 2.29 are independent. 

In the shaded region of Fig. 2-17, f (x, y) = 8xy, f1(x) = 4x3, f2( y) = 4y (1 — 

y2). Hence f (x, y) 2 

and thus X and Y are dependent. 

 
f1(x) f2( y), 

It should be noted that it does not follow from f (x, y) = 8xy that f (x, y) can be expressed 

as a function of x alone times a function of y alone. This is because the restriction 0 Š y 

Š x occurs. If this were replaced by some restriction on y not depending on x (as in 

Problem 2.21), such a conclusion would be valid. 
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r 

¢ 
r 

≤ 
2 

R 

Applications to geometric probability 

P(r Š R Š r + dr) 

= c 

A person playing darts finds that the probability of the dart sBtriking between r and r + dr is 
1 — a dr 

Here, R is the distance of the hit from the center of the target, c is a constant, and a is the radius 

of the tar- get (see Fig. 2-18). Find the probability of hitting the bull’s-eye, which is assumed 

to have radius b. As- 

sume that the target is always 

hit. 

The density function is given 

by 

 
Since the target is always hit, we have 

f (r) = c 2 

B ¢   ≤ R 

1 — a 

a 
r 

2
 

c 3 B1 — ¢ a ≤ R dr = 1 
0 

 
 

 

Fig. 2-18
¢ 

r 
≤

 

from which c = 3>2a. Then the probability of hitting the b2ull’s-eye is 
R 

b 3 b 

3 f (r) dr =2a 3 B 

0 0   1 — a
 

 

 

 
dr = 

b (3a2 — b2) 

 
2a3 

Twopoints are selected at random in the interval 0 Š x Š 1. Determine the probability that the 

sum of their squares is less than 1. 

Let X and Y denote the random variables associated with the given points. Since equal 

intervals are assumed to have equal probabilities, the density functions of X and Y are 

given, respectively, by 

 

(1) 
f (x) = e 

1 0 Š x
 

Š 1 

f ( y) = e 
1 0 Š y Š 1 

1 0 otherwise 2 0 otherwise 

Then since X and Y are independent, the joint density function is given by 

(2) f (x, y) = f (x) f (y) = e 
1 0 Š x Š 1, 0 Š y Š 1

 

1 2 0 otherwise 
It follows that the required probability is given by 

 

(3) P(X2 + Y2 Š1) = 6 dx dy 

r 
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whereristheregiondefinedby x2 + y2 Š 1, x Š 0, y Š 0, which isaquarterofacircleofradius 1 (Fig. 2-19). 

Now since (3) represents the area of r, we see that the required probability is p >4. 
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Fig. 2-19 

 
Miscellaneous problems 

Suppose that the random variables X and Y have a joint density function givenby 

 

f (x, y) = e 
c (2x + y) 2 < x < 6, 0  < y <  5 

0 otherwise 

 

Find (a) the constant c, (b) the marginal distribution functions for X and Y, (c) the marginal 

density func- tions for X and Y, (d) P(3 < X < 4, Y > 2), (e) P(X > 3), (f ) P(X + Y > 4), (g) the 

joint distribution func- 

6 5 
¢ 

y2 
≤ 2 

5 

c(2x + y) dx dy = c  2xy + 

tion, (h) whether X and Y are independent. 6 

(a) The total probability is given by 2 
dx 

53 c ¢ 10x + 
25 

≤ 
3 3 3 x = 0 

2 y = 0 
 

3x 
F1(x) = P(X Š x) = 

6x = 2 

` f (u, v) du dv 

v= 

 
2 

dx = 210c 

u =—`3—` 
x = 2 

x ` 0 du dv = 0 x < 2 2 Š x < 6 
For this to equal 1, we must hav3e c = 13>210.  2 

3 35 2u + v du dv = 2x + 5x 
(b) The marginal distribution function for X is 

— 18 
= g

u =—` v=—` 

u = 2
3
v=   221100  84 

0 

36 5 

u v= 

2u + v 
du dv = 1 x Š 6 

=3 0 3 

2 
The marginal distribution function for Y is 

` 
F2( y) = P(Y Š y) = 

y f (u, v) du dv 

v= 
u =—` —` 

` y 0 dudv = 0 y < 0 0 Š y < 5 

3 

g 36 
= 

3 2u + v  
duvd= 

y2 + 
3y 

16y 

u =—`  v=—
21

8
0
 

u =3 0 v3= 0   21 

0 

 

105 

6 5 

u v= 

= 0 

2 

2u + v 
du dv = 1 y Š 5 

x 
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(d) 3 

3 

(c) The marginal density function for X is, from part (b), 

f (x) = d F (x) = 
(4x + 5) 84 2 < x < 6 

1 dx   1 0 

The marginal density function for Y is, from part (eb), 
> otherwise 

 

f ( y) =  d  F (y) =  e 
(2y  + 16) >105 0 < y <  5 

2 dy   2 
0 otherwise 

P(3 < X < 4, Y > 2) =
 1  4 

35

 
(2x + y) dx dy =

 3 
 

210  x 

5= 
3 

y = 2 20 

(e) 
P(X > 3) = 1  6 

3 (2x + y) dx dy = 
23

 

210  x 

= 

3 

y = 0 28 

(f ) P(X + Y > 4) = 6 f (x, y) dxdy 

r 

where r is the shaded region of Fig. 2-20. Although this can be found, it is easier to 

use the fact that 

P(X + Y > 4) = 1 — P(X + Y Š 4) = 1 

— 6 

 
where rr is the cross-hatched region ofiFg. 2-20. We have 

f (x, y) dx dy 

r 

1 4 

P(X + Y Š 4) = 3 
4 

— x 
(2x + y) dx dy = 

2
 

Thus P(X + Y > 4) = 33>35. 210 x = 2 y = 0 35 
 

 

 
 

Fig. 2-20 Fig. 2-21 
 
 

(g) The joint distribution function is 3 

x 
F(x, y) = P(X Š x, Y Š y) = 

v=—` 

u
3
=—`  y 

3 
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f (u, v) du dv 

In the uv plane (Fig. 2-21) the region of integration is the intersection of the quarter 

plane u Š x, v Š y and the rectangle 2 < u < 6, 0 ™ v < 5 [over which f (u, v) is nonzero]. 

For (x, y) located as in the figure, we have 
6 y 

F(x, y) = 3 3 

u = 2 v= 

0 

2u + v  
duvd= 

21 

0 

16y + y2 

105 
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3 3 

 

 

When (x, y) lies inside the rectangle, we obtain another expression, etc. The complete 

results are shown in Fig. 2-22. 

(h) The random variables are dependent since 

f (x, y) 2 f1(x) f2( y) 
 

or equivalently, F(x, y) 2 

F1(x)F2(y). 

Let X have the density function 

 

f (x) = e 
6x (1 — x) 0 < x < 1 

0 otherwise 

Find a function Y = h(X) which has the density function 

g( y) = 
12y3(1 — y2) 0 < y <  1 

e 0 otherwise 

 

 

Fig. 2-22 

 

 

We assume that the unknown function h is such that the intervals X Š x and Y Š y + 

h(x) correspond in a one-one, continuous fashion. Then P(X Š x) = P(Y Š y), i.e., the 

distribution functions of X and Y must be equal. Thus, for 0 < x, y < 1, 

x
6u(1 — u) du = 

y
12v3 (1 — v2) dv 

0  0 

or 3x2 — 2x3 = 3y4 — 2y6 

 
!x is a solution, and this solution has the desired properties. Thus 

By inspection, x = y2 or y = h(x) = + 
Y = +! 

X. 

2.35. Find the density function of U = XY if the joint density function of X and Y is f (x, y). 
> 

Method 

1 
4 
'u  'v 

4 
2  0 1 2 

 
 

 
 

 

 
 

 

Let U = XY and V = X, corresponding to which u = xy, v = x or x = v, y = u v. Then the 

Jacobian is given by 



 

'x 
'x 

J =   
'y   'y 

'u 

'v 

= 
v—1 — 

uv—2 

= —v—1 



 

x 
u  1 

f 
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Thus the joint density function of U and V is 
 

g(u, v) =
 1 

f ¢ v, 
u 

≤ 

 

from which the marginal density function of U is obtaineudvau s 

 
` 

v 
 
 

`   1  

 

vu  
dv 

Method 2 

The distribution function of 

U is 

g(u) = 3 
g(u, v) dv = 

—` 

3—` u 

vu 

f ¢ v, ≤ 

 
 
 
 

G(u) = 6 

f 

 

(x, y) dxdy 

For u Š 0, the region of integration is sh0ow
B

n s̀haded inxFyigŠ. 2u-23. We see that 

` u>x 

G(u) = x +  3  B 3    f (x, y) dyR dx 

R 0 —` 

 
 

3 x 

—` 3u>  f (x, y) dy d 

Fig. 2-24 

 
 

` 

f ¢x, x ≤ dx = 3
—` u x u

 ¢ x, 
u 

≤ dx 

Fig. 2-23 

 

g(u) = 

¢ 
—1 

≤ f ¢ x, 
u 

≤ 
1

ntegration is bounded by the dashed hyperbola in 

0 ` 

Differentiating with respect to u, we obtain each other. A needle of length a < l is dropped at 
3 

x x dx +
3 

x 

—` 0 

The same result is obtained for u < 0, when the 

region of i Fig. 2-24. 

A floor has parallel lines on it at equal distances l from 

random onto the floor. Find the probability that the needle will intersect a line. (This problem is known as 

Buffon’s needle > 

p
L
r
e
o
t X
bl

b
e
e
m
a
.
r
)
andom variable that gives the distance of the midpoint of the needle to the nearest line (Fig. 2-24). Let 0 

be a random variable that gives the acute angle between the nePed(ule Š(or0its +extdeuns)io=n)
2
adnud the line. We denote by 

x and u any particular values of X and 0. It is seen that X can take on any value between 0 and l >2, so that 0 Š 

x Š l >2. Also 0 can take on any value between 0 and p 2. It follows that 



 

P(x < X Š x + dx) = 
2 

dx p 

i.e., the density functions of X and 0 are given by f1(x) = 2>l, f2(u) = 2>p. As a check, we note that 

l> 2 

30 l 0 p 
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1 

0 otherwise 

4    4 16 2 4 4 

 

 

Since X and 0 are independent the joint density function is 

f (x, u) = 
2  

?  
2  

= 
4

 
 

> 

From Fig. 2-24 it is seen that the needle actually hits a line when X Š (a 2) sin 0. The probability of this 

event is given by 
 

l p lp 

 

lp 

 4   p> 2 (a> 2) sin u 2a 
3 3 

lp u=0 dx du = 

x =0 

When the above expression is equated to the frequency of hits observed in actual 

experiments, accurate values of p are obtained. This indicates that the probability model 

described above is appropriate. 

Two people agree to meet between 2:00 P.M. and 3:00 P.M., with the understanding that each 

will wait no longer than 15 minutes for the other. What is the probability that they willmeet? 

Let X and Y be random variables representing the times of arrival, measured in 

fractions of an hour after 2:00 P.M., of the two people. Assuming that equal intervals 

of time have equal probabilities of arrival, the density functions of X and Y are given 

respectively by 
 

f (x) =  e 
1 0 Š x Š 1 

0 otherwise 

f ( y) = e 
1 0 Š y Š 1 

2 

Then, since X and Y are independent, the joint density function is 

(1) f (x, y) = f (x) f (y) = e 
1 0 Š x Š 1, 0 Š y Š 1

 
 

1 

 

 

Since 15 minutes = 1 hour, the required probability is 
 

4 

2 0 otherwise 

 
(2) 

¢ 

P u X — Y u Š 
1

 
4 

≤ 

= 6 dx dy 

where 5 is the region shown shaded in Fig. 2-25. Therright side of (2) is the area of this region, 

which is equal 

to 1 — (3)(3) = 7 , since the square has area 1, while the two corner triangles have areas 1 (3)(3) each. Thus the 

required probability> is 7 16. 
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Fig. 2-25 
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x 1 2 3 

 2 1 3 1 6 

 

x 1 2 3 4 

F(x) 1 8 3 8 3 4 1 

 

 

 

 SUPPLEMENTARY  PROBLEMS  

 

Discrete random variables and probability distributions 

A coin is tossed three times. If X is a random variable giving the number of heads that 

arise, construct a table showing the probability distribution of X. 

 

An urn holds 5 white and 3 black marbles. If 2 marbles are to be drawn at random without 

replacement and X 

denotes the number of white marbles, find the probability distribution for X. 

 

Work Problem 2.39 if the marbles are to be drawn with replacement. 

 

Let Z be a random variable giving the number of heads minus the number of tails in 2 tosses 

of a fair coin. Find the probability distribution of Z. Compare with the results of Examples 

2.1 and 2.2. 

 

Let X be a random variable giving the number of aces in a random draw of 4 cards from an 

ordinary deck of 52 cards. Construct a table showing the probability distribution of X. 

 

Discrete distribution functions 

The probability function of a random variable X is shown in Table 2-7. Construct a table 

giving the distribution function of X. 
 

 

 

Obtain the distribution function for (a) Problem 2.38, (b) Problem 2.39, (c) Problem 2.40. 

Obtain the distribution function for (a) Problem 2.41, (b) Problem 2.42. 

Table 2-8 shows the distribution function of a random variable X. Determine (a) the probability 

function, 
(b) P(1 Š X Š 3), (c) P(X Š 2), (d) P(X < 3), (e) P(X > 1.4). 

 

Continuous random variables and probability distributions 

A random variable X has density function 

f (x) = 
ce—3x x > 0 

e 
0 x Š 0 

Find (a) the constant c, (b) P(l < X < 2), (c) P(X Š 3), (d) P(X < 1). 

 

Find the distribution function for the random variable of Problem 2.47. Graph the 

density and distribution functions, describing the relationship between them. 

 

A random variable X has density 

function 

f (x) = 

 

> cx 2 1 Š x Š 2 

• cx 2 < x < 3 
0 otherwise 

Find (a) the constant c, (b) P(X > 2), (c) P(1 2 < X < 3 2). 
> 
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Find the distribution function for the random variable X of Problem 2.49. 

 

The distribution function of a random variable X is given by 

cx3  0 Š x  < 3 

F(x) = • 
1 x Š 3 
0 x < 0 

If P(X = 3) = 0, find (a) the constant c, (b) the density function, (c) P(X > 1), (d) P(1 < X < 2). 
 

Can the function 

 

 

be a distribution function? 

Explain. 

F(x) = e 
c(1 — x2) 0 Š x Š 1 

0 otherwise 

 

Let X be a random variable having density function 

f (x) =   
cx   0 Š  x Š 2 

e 0 otherwise 

Find (a) the value of the constant c, (b) P(1 < X < 3), (c) P(X > 1), (d) the distribution 

function. 
 

2 2 

 
Joint distributions and independent variables 

The joint probability function of two discrete random variables X and Y is given by f(x, y) = 

cxy for x = 1, 2, 3 and y = 1, 2, 3, and equals zero otherwise. Find (a) the constant c, (b) P(X 

= 2, Y = 3), (c) P(l Š X Š 2, Y Š 2), (d) P(X Š 2), (e) P(Y < 2), (f ) P(X = 1), (g) P(Y = 3). 

 

Find the marginal probability functions of (a) X and (b) Y for the random variables of Problem 

2.54. 

(c) Determine whether X and Y are independent. 

 

Let X and Y be continuous random variables having joint density function 

f (x, y) = 
c(x 2 + y2)0 Š x Š 1, 0 Š y Š 1 

e 0 otherwise 

Determine (a) the constant c, (b) P(X < 1, Y > 1), (c) P (1 < X < 3), (d) P(Y < 1), (e) whether X 

and Y are 
 

     

independe 

nt. 

2 2 4 4 2 

 

Find the marginal distribution functions (a) of X and (b) of Y for the density function of Problem 

2.56. 

 

Conditional distributions and density functions 

Find the conditional probability function (a) of X given Y, (b) of Y given X, for the distribution of 

Problem 2.54. 

e 
x + y 0  Š  x  Š 1, 0  Š  y  Š 1 

Let 
f (x, y) = 

0 otherwise 

Find the conditional density function of (a) X given Y, (b) Y given X. 

 

Find the conditional density of (a) X given Y, (b) Y given X, for the distribution of Problem 2.56. 
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Let 

f (x, y) =  
e—(x+y) x Š 0, y Š 0 

0 otherwise 

be the joint density function of X and Y. Find the conditional density function of (a) X given 

Y, (b) Y given X. 
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e 

 

 

Change of variables 

Let X have density function 

 
f (x) = 

e—xx > 0
 

0 x Š 0 
 

 

Find the density function of 

Y = X2. 

 

(a) If the density function of X is f (x) find the density function of X3. (b) Illustrate the 

result in part (a) by choosing 
 

2.64. If X has density function f (x) = 2(p—) 1> 

and check the 

answer. 

f (x) =
e 2e—2x x Š 0 

0 x < 0 

 

 

2
2> 2 

2e—x , —` < x < `, find the density function of Y = X . 

 

2.65. Verify that the integral of g1(u) in Method 1 of Problem 2.21 is equal to 1. 

If the density of X is f (x) = 1> 2 1 

Complete the work neededpto(xfi+nd1)g, —1(ù)<inx M< èt,hfoindd2thoefdPenrsoibtyleomf Y2=.2ta1nandX.check your answer. 

Let the density of X be 

 

 

 

Find the density of (a) 3X — 2, 

(b) X3 + 1. 

 

f (x) = 

e 

1>2 —1 < x < 1 

 
0 otherwise 

 

Check by direct integration the joint density function found in Problem 2.22. 
 

Let X and Y have joint density 

function 
f (x, y) =e  

e—(x+y) x Š 0, y Š 0 

0 otherwise 
 

 

If U = X>Y 

, V = X + Y, find the joint density function of U and V. 

 

Use Problem 2.22 to find the density function of (a) U = XY 2, (b) V = X 2Y. 

 

Let X and Y be random variables having joint density function f (x, y) = (2p)—1 e—(x2+y2), —` < 

x < `, 

—` < y < `. If R and 0 are new random variables such that X = R cos 0, Y = R sin 0, show 

that the density 

 

function of 

R is 

g(r) = e — 

re r2 
0 > r < 0 

2 r Š 0 
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Let 

f (x, y) =e 
1 0 Š x Š 1, 0 Š y Š 1 

0 otherwise 

be the joint density function of X and Y. Find the density function of Z = XY. 

 

Convolutions 

Let X and Y be identically distributed independent random variables with density function 

f (t) =  
1 0 Š t Š 1 

e 0 otherwise 

Find the density function of X + Y and check your answer. 

 

Let X and Y be identically distributed independent random variables with density function 

f (t) = 
e—t t Š 0

 
e 0 otherwise 

Find the density function of X + Y and check your answer. 

 

Work Problem 2.21 by first making the transformation 2Y = Z and then using convolutions 

to find the density function of U = X + Z. 

 

If the independent random variables X1 and X2 are identically distributed with density function 

f (t) =   
te—t t  Š 0 

e 
0 t < 0 

find the density function of X1 + X2. 

Applications to geometric probability 

Two points are to be chosen at random on a line segment whose length is a > 0. Find the 

probability that the three line segments thus formed will be the sides of a triangle. 

 

It is known that a bus will arrive at random at a certain location sometime between 3:00 

P.M. and 3:30 P.M. A man decides that he will go at random to this location between 

these two times and will wait at most 5 minutes for the bus. If he misses it, he will take the 

subway. What is the probability that he will take the subway? 

 

Two line segments, AB and CD, have lengths 8 and 6 units, respectively. Two points P and Q 

are to be chosen at random on AB and CD, respectively. Show that the probability that the 

area of a triangle will have height AP and that the base CQ will>be greater than 12 
square units is equal to (1 — ln 2) 2. 

3 , x = 1, 2, c, is the probability function for a random variable X. (a) 
>
Determine c. 

Miscellaneous problems 

Suppose that f (x) = c x 

(b) Find the distribution function. (c) Graph the probability function and the distribution 

function. (d) Find 

P(2 Š X < 5). (e) Find P(X Š 3). 
 

Suppose that 

f (x) = e cxe—2x x Š 0 

0 otherwise 

is the density function for a random variable X. (a) Determine c. (b) Find the distribution 

function. (c) Graph the density function and the distribution function. (d) Find P(X Š 1). 
(e) Find P(2 Š X < 3). 
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The probability function of a random variable X is given by 

2p   x = 1 

f (x) = μ 
p x = 2

 

4p   x = 3 
0 

otherwi 

se where p is a constant. Find (a) P(0 Š X < 3), (b) P(X 

> 1). 
 

(a) Prove that for a suitable 

constant c, 
F(x) =  

0 x Š 0
 

e 
c(1 — e—x)2 x > 0 

is the distribution function for a random variable X, and find this c. (b) Determine P(l < X < 

2). 
 

A random variable X has density function  
3(1 — x2) 0 Š x Š 1 

f (x) = e 2 

0 otherwise 

Find the density function of the random variable Y = X2 and check your answer. 

Two independent random variables, X and Y, have respective density functions 

f (x) = 
c1e—2x x

 g( y) = 
c2 ye—3y y > 0 

> 0 e e 0 y Š 0 

0 x Š 0 

Find (a) c1 and c2, (b) P(X + Y > 1), (c) P(l < X < 2, Y Š 1), (d) P(1 < X < 2), (e) P(Y Š l). 

In Problem 2.86 what is the relationship between the answers to (c), (d), and (e)? Justify your 

answer. 

 

Let X and Y be random variables having joint density function 

 

f (x, y) = 
c(2x + y) 0 < x < 1, 0 < y < 2 

e 
0 otherwise 

Find (a) the constant c, (b) P(X > 1, Y < 3), (c) the (marginal) density function of X, (d) the 

(marginal) density 
 

2 2 

function of Y. 
 

2.89. In Problem 2.88 is P(X > 1, Y < 3) = P(X > 1)P(Y < 3)? Why? 
 

2 2 2 2 

 

In Problem 2.86 find the density function (a) of X2, (b) of X + Y. 

f (x, y) = e 
y 0 < x < y, 0 < y < 1 

Let X and Y have joint density function 
1
0
> 

 
otherwise 



73 CHAPTER 2 Random Variables and Probability Distributions 
 

 

(a) Determine whether X and Y are independent, (b) Find P(X > 1). (c) Find P(X < 1, Y > 1). 

(d) Find 
 

   

P(X + Y > 
1). 

2
 

2 2 3 

 

Generalize (a) Problem 2.74 and (b) Problem 2.75 to three or more variables. 
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e 

2 

u 

l is to be tossed onto the floor. Prove that the 

 

 
Let X and Y be identically distributed independent random variables having density function 

f (u) = (2p
—
)

1>2e—
2>  u 2, —` < u < `. Find the density function of Z = X2 + Y 2. 

The joint probability function for the random variables X and Y is given in Table 2-9. (a) 

Find the marginal probability functions of X and Y. (b) Find P(l Š X < 3, Y Š 1). (c) 

Determine whether X and Y are independent. 

Table 2-9 

 

Y 

X 
0 

> 

> 
> 

1 

> 

> 
> 

2 
 

> 

> 

0 1 
18 

1 9 1 6 

1 1 9 1 
18 

1 9 

2 1 6 1 6 1 18 

 

Suppose that the joint probability function of random variables X and Y is given by 

f (x, y) = 
cxy 0 Š x Š 2, 0 Š y Š x 

0 otherwise 

 
(a) Determine whether X and Y are independent. (2b) Find P(1 < X < 1). (c) Find P(Y Š 1). (d) 

Find 

P(1 < X < 1, Y Š 1). 

 

Let X and Y be independent random variables each having density function 

f (u) =  
lue—l 

wherel > 0. Provethatthedensityfunction 

of X + Y is 

u = 0, 1, 2, c 

(2l)ue—2l 

g(u) = u! u = 0, 1, 2, c 

A stick of length L is to be broken into two parts. What is the probability that one part will 

have a length of more than double the other? State clearly what assumptions would you 

believe these assumptions are realistic and how you might improve them if they are not.  

have made. Discuss whether you 

2.98.  Aprfoloboarbisilmitaydoe fupthoef snqeueardelseoifnstideersl.eActnineegdlaetolfelaesntgtohnae<side is equal to a(4l — a)> l2. 

p 

For a needle of given length, what should be the side of a square in Problem 2.98 so that 
the probability of intersection is a maximum? Explain your answer. 

 

f (x, y, z) =e 
24xy2z30 < x < 1, 0 < y < 1, 0 < z < 1 

Let 
0 otherwise 

 
be the joint density function of three random variables X, Y, and Z. Find (a) P(X > 1, Y < 1, Z 

> 1), 
 

   

(b) P(Z < X + Y 

). 

2 2 2 
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2.101. A cylindrical stream of particles, of radius a, is directed toward a hemispherical target ABC with center at O as 

indicated in Fig. 2-26. Assume that the distribution of particles is given by 

1> 
f (r) = e 

a 0 < r < a 

0 otherwise 
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> 

where r is the distance from the axis OB. Show that the distribution of particles along the 

target is given by 

g(u) =   
cos u   0  < u < p 2 

> 
e 0 otherwise 

where u is the angle that line OP (from O to any point P on the target) makes with the axis. 

 

Fig. 2-26 

 
In Problem 2.101 find the probability that a particle will hit the target between u = 0 and u = p 

4. 

Suppose that random variables X, Y, and Z have joint density function 

f (x, y, z) = 
1 — cos px cos py cos pz 0 < x < 1, 0 < y < 1, 0 < z < 1 

e 0 otherwise 

Show that although any two of these random variables are independent, i.e., their marginal 

density function factors, all three are not independent. 
 

 

 

 ANSWERS TO SUPPLEMENTARY  PROBLEMS  
 
 

2.38 

. 

 

 

2.40 

. 

 

 

2.42 

. 

 

 

 

2.43 

. 

 

 

 

2.46. (a) 

2.39. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 3
>
4 (c) 7 8 

>
(d) 3 8 (e)

>
7 8 

>
 

x 0 1 2 

f (x) 3 28 15 28 5 14 

 

x 0 1 2 3 

f (x)    1 8 

 

x 0 1 2  

f (x) 9 64 15 32 25 64 

x 0 1 2 3 4 

 

f (x) 
194,580 

270,725 

 69,184  

270,725 

   6768  

270,725 

    192  

270,725 
  1  

270,725 

 

x 0 1 2 3  

f (x) x  1  2  3  4  

f (x) 1 8 1 4 3 8 1 4 
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2.47. (a) 3 (b) e—3 — e—6 (c) 

e—9 

 
(d) 1 — 

e—3 

2.48.  F (x) = e 
1 — e—3x x Š 0

 

> > > 0 x Š 0 

0 x Š 1 

2.49. (a) 6 29 (b) 15 29 (c) 19 116 

2.50. F 

= 
μ27 (d) 7 27> 

(x)  

0 otherwise 
 

(3x 2  +>2)  29 2 Š x Š 3 

2.51.  (a) 1/27   (b) f (x) = e 
x 2/9 0 Š

 

x < 3 

(c) 26  1 x Š 3 

2.53. (a) 1>2 (b) 1>2  (c) 3>4  (d) F(x) 0=  •  2>4  x 0Š Š0 x Š  2 

> > > > >x > > 

> 1 > x Š 2 
0 other x 0 other y 

2.54. (a) 1 36 (b) 1 6 (c) 1 4 (d) 5 6 (e) 1 6 (f ) 1 6 (g) 1 2 

2.55. (a) f (x) = e 
x 6 x = 1, 2,

 

 
 

(b) f ( y) = e 
y 6 y = 1, 2, 3 

3 
1 2 

2.57. (a) F (x) = • 1 (x 3 + x) (b) F ( y) = • y3 + y) 0 Š y Š 1 

2.56. (a) 3>12 (b) 1>4 (c) 29>64 (d)05>Š16x Š 1 
2
 

1 0 x Š 0 

(a) f (x u y) = f
21(x) for y = 1, 2, 3 (see Problem 

0 y Š 0 

2 ( 

1 x Š 1 2.55) 1 y Š 1 

(b) f ( y u x) = f2( y) for x = 1, 2, 3 (see Problem 
2.55) 

(x + y)>( y + 
1 

) 0 Š x Š 1, 0 Š y Š 1 

(a) f (x u y) = e 0 2 other x, 0 Š y Š 1 

(b) f ( y u x) = e 

(a) f (x u y) = e (x + 

y) 

>
(x + 2 ) 0 Š x Š 1, 0 Š y Š 1 

>( y 
1 

+ 3 ) 0 Š x Š 1, 0 Š y Š 1 
0 

(b) f ( y ux) = (x 2 + 
>  

2 

0 Š x Š 1, other y 

1 
e y2) (x + 3 ) 0 Š x Š 1, 0 Š y Š 1 

0e—x x Š 0, y Š  0 other x, 0 Š y Š 1 
2.61. (a) f (x u y) = e 2

 2 2 1 (b) f (y ux)  = e 
e—y x Š 0, y Š 0

 

0(x +x <y  0), y Š  0 0 x Š 0, y < 0 

0 0 Š x Š 1, other y 

e—  1 y>2 !y for y > 0; 0 otherwise  2.64.  (2p)—1> 2y—1> 2 e—y> 2  for y > 0; 0 otherwise 

e 
—5 < y < 

2.66. 1>p for —p>12 < y < p>2; 0 otherwise 
• 

6 
>

 

2.70. ve—v (1 +1 u)2 for u Š 0, v Š 0; 0 othe1r(w1 i—sey)—2>3 0 < y < 1 
 

2.68. (a) g( 

 

 
> 

y) = 6 

0 otherwise 
(b) g( y) = 1 ( —2  3y — 1)1 < y 

0 otherwise 
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2.73.  g(z) = 
—ln  z  0 < z < 1

 
e0 otherwise 

u 0 Š u Š 

1 
• 0 u < 0 

2.77. g(x) =e 
x 3e—x/6 x Š 0

 

0 x < 0 

 

>72 > 

2.74.  g(u) = 2 — u  1 Š u Š 2 2.78. 1 4 

u0e—u u oŠth0 erwise 
2.75. g(u) = e 1 — 30—y2.79yx.Š<61x1< y + 1; y = 1, 2, 3, c (d) 26>81 (e) 1>9 
2.81. (a) 2 (b) F(x) = e 

1 — e—2x (2x + 1) x Š 0 
2.832..  ((aa)) 34>7 (b()bF)(x>5) =7   e    2.84. (a) c = 1x(b+) e1

—4 — 3e—(2d+) 32e—e 21 
 

 

(e) 5e—4 — 7e—6 

0 e x < 0 

> > 0 < x < 1 1 
( y + 1) 0 < y < 2 

 

 

 

 
2.86. (a) c1 = 

!
2, c2 = 9 (b) 9e—(b)2 e—

18e—2

(
u

c) 4
u 

e
>—05 — 

 

(d) e—2 — 

0 otherwise 

 

(e) 4e—3 

14e—3 4e—7 e—4 

2.88. (a) 1 4 (b) 27 64 (c) f1(x) = 2 (d) f2( y) = e 4 

2.90. (a) e 
e—2y/ y y > 0

 

2.91. 
1 

— ln 2) (c) 
1 

+ 
1 

 

0 

e 1 
ln 2 

otherwis 
2.95. (b) 15 

>256 (c) 9>16 (d) 0 

0 
(b) (1 

2 
se 

2 

>     
othe6rwi 

(d) 2 

 
2.100. (a) 45 

512 (b) 1>14 

 
2.94. (b) 7 

0
1 

e—z  2 zz Š<00 

 
 

18 2.102. ! >2 2 

ln 2 



 

 

 
MathematicalExpectation 

 
 

Definition of Mathematical Expectation 

A very important concept in probability and statistics is that of the mathematical expectation, expected 

value, or briefly the expectation, of a random variable. For a discrete random variable X having the 

possible values x1, c, xn, the expectation of X is defined as 

E(X) =  x P(X =  x ) +  c+  x P(X =  x  ) = 

n x P(X = x (1) 

a ) 

1 1 n n  j j 

j=1 
 

or equivalently, if P(X = xj) = f (xj), 

E(X) = x f (x ) + c + x f (x ) = a x f (x ) = ax f 

 
1 1 n 

n 

n  (x) (2) 

j j 

j=1 

where the last summation is taken over all appropriate values of x. As a special case of (2), where 

the probabil- ities are all equal, we have 

 

E(X) = 
x1 + x2 + c+ 

xn n (3) 

which is called the arithmetic mean, or simply the mean, of x1, x2, 

c, xn. x f (x ) provided that the infinite se- 
g 

If X takes on an infinite number of values x , x , c, then E(X) 

= ` 

1 2 

ries converges 

absolutely. 

j=1 j j 

For a continuous random variable X having density function f (x), the expectation of X is defined as 
 

` 
E(X) =3 

 
xf (x) 

 
(4) 

—`dx                                                 

provided that the integral converges absolutely. 

The expectation of X is very often called the mean of X and is denoted by mX, or simply m, when 

the partic- ular random variable is understood. 

The mean, or expectation, of X gives a single value that acts as a representative or average of the 

values of X, and for this reason it is often called a measure of central tendency. Other measures are 

considered on page 83. 
 

EXAMPLE 3.1 Suppose that a game is to be played with a single die assumed fair. In this 

game a player wins $20 if a 2 turns up, $40 if a 4 turns up; loses $30 if a 6 turns up; while the 

player neither wins nor loses  if any other face turns up. Find the expected sum of money to be 

won. 
hen the die 
The prob- 

 
CHAPTER 3 
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6 
= 

 

Let X betherandomvariablegivingtheamount of moneywon on anytoss. Thepossibleamountswonw 

turns up 1, 2, c, 6 are x1, x2, c, x6, respectively, while the probabilities of these are f (x1), f (x2), . . . ,  f (x6). 

ability function for X is displayed in Table 3-1. Therefore, the expected value or expectation is 

¢   ≤         ¢   ≤        ¢   ≤         ¢   ≤        ¢   ≤ ¢ 

E(X) (0) 
1
 
6 

(20)  
1 

6 
(0)  

1 

6 
(40)  

1 

6 
(0)  

1 

6 
+ (—30)  

1 
= 5 + + + + 



 

0 
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Table 3-1 

 

xj 0 

> 

+ 2 

> 
0 

0 

> 

+ 4 

> 

0 

0 

> 

— 

30 

> 

f 

(xj) 

1 6 1 6 1 6 1 6 1 6 1 6 

 

It follows that the player can expect to win $5. In a fair game, therefore, the player should be 

expected to pay $5 in order to play the game. 

 

EXAMPLE 3.2 The density function of a random variable 
X is given by 

e1
2 
x   0 < x < 2 

f (x) =  0 otherwise 

 
The expected value of X is then 

2
x ¢ 

1
 x3 

2 
2 4 

 
E(X) = ` 

3 

 

—` 

Functions of Random Variables 

≤ 
3 

0 

xf (x) dx 

= 

2 
x 2 x2 

dx = 3 2 dx = 6 = 3
 

0 

 
 

Let X be a discrete random variable with probability function f (x). Then Y = g(X) is also a discrete 

random vari- 

able, and the probability function of 

Y is 

xZg(x) 

=y6 
5xZg(x)=y6 

If X takes on the values x1, x2, c, xn, and Y the values  y1, y2, c, ym (m Š n), then y1h(y1) + y2h(y2) 

+ c+ 

y  h( y  ) = g(x )f (x ) + g(x ) f (x ) + c+ g(x ) f (x ). Therefore, 

m m 1 1 2 2 n n 

E[g(X)] = g(x1) f (x1) + g(x2) f (x2) + c+ g(xn)f (xn) 

g(x )f(x ) = a g(x)f 

(x) 
n 

= a 

j j 

(5) 

j=1 

Similarly, if X is a continuous random variable having probability density f (x), then it can be shown 

that 
` 

E[g(X)] =
3
 

g(x) f (x) 
dx 

(6) 

—` 

Note that (5) and (6) do not involve, respectively, the probability function and the probability 

density function of Y = g(X). 
Generalizations are easily made to functions of two or more random variables. For example, if X and 

Y are two 

continuous random variables having joint density function f (x, y), then the expectation of g(X, Y) is 

given by 
` 

E[g(X, Y)] = 3 
3 

—` 

` 
g(x, y) f (x, y) dx dy —` 

76 



 

(3x   — 2x) f (x) dx = 3 ¢ ≤ 

 

 
EXAMPLE 3.3 

 
2 1 10 

If X is the random variable of Example 3.2, 

(7) 

2 

(3x2 — 2x)2 
x dx = 

3 

—` 

 

 

 
Some Theorems on Expectation 

Theorem 3-1 If c is any constant, then 
 

E(cX) = cE(X) (8) 

0 
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Theorem 3-2 If X and Y are any random variables, then 

 

E(X + Y) = E(X) + E(Y) (9) 

 

Theorem 3-3 If X and Y are independent random variables, then 

 
E(XY) = E(X )E(Y ) (10) 

Generalizations of these theorems are easily made. 

 

The Variance and Standard Deviation 

We have already noted on page 75 that the expectation of a random variable X is often called the 

mean and is denoted by m. Another quantity of great importance in probability and statistics is 

called the variance and is defined by 

Var(X) = E[(X — m)2] (11) 

The variance is a nonnegative number. The positive square root of the variance is called the standard deviation 

and is given by 

 

 

 

sX = 2Var (X) = 2E[(X — m)2] (12) 

Where no confusion can result, the standard deviation is often denoted by s instead of sX, and the 

variance in such case is s2. 
If X is a discrete random variable taking the values x1, x2, . . . , xn and having probability 

function f (x), then the variance is given by 

s2  =  E[(X — m)2] = — m)2f (x ) = a(x — 

nX 

a (x 

 
j=1 

j m)2 
j 

f (x) 
(13) 

 

In the special case of (13) where the probabilities are all equal, we have > 

s2 = [(x1 — m)2 + (x2 — m)2 + c + (xn — m)2] n 

 
which is the variance for a set of n numbers x1, . . . , xn. 

(14) 

If X takes on an infinite number of values x , x , . . . , then sg2 

=  ̀
(x — m)2f (x ), provided that the 

series 

converge 

s. 
1 2 j=1 j j 

 

X 

If X is a continuous random variable having density function f (x), then the variance is given by 
 

` 

s2
X= E[(X —  m)2] 

3
= 

(x — m)2 f 

(x) dx 

(15) 

—` 

 
provided that the integral converges. 

The variance (or the standard deviation) is a measure of the dispersion, or scatter, of the values 

of the ran- dom variable about the mean m. If the values tend to be concentrated near the mean, the 

variance is small; while if the values tend to be distributed far from the mean, the variance is large. 

The situation is indicated graphically in Fig. 3-1 for the case of two continuous distributions having 

the same mean m. 
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Fig. 3-1 
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2 4 4 4 1 2 
ance and standard deviation of the random variableof Example 3.2. As found in Example 3.2,  

EXAMPLE 3.4 Find the vari  Then the v2ariancè is given by2 2  2 

the mean is m = E(X) = 
4>3. 

X — 3 = 3 
—` 3 

f (x) dx = 3 
0 

x — 3 2 x dx = 9 

and so the standard deviation is s = 

9 
2 

= 2  

Note that if X has certain dimensions or units, such as centimeters (cm), then the variance of X has 

units cm2 while the standard deviation has the same unit as X, i.e., cm. It is for this reason that the 

standard deviation is often used. 

 
 

Some Theorems on Variance 

Theorem 3-4 s2 = E[(X — m)2] = E(X2) — m2 = E(X2) — [E(X)]2 (16) 

where m = E(X). 
 

Theorem 3-5 If c is any constant,  
 

Var (cX) = c2 Var(X) (17) 
 

Theorem 3-6 The quantity E[(X — a)2] is a minimum when a = m = E(X). 
 

Theorem 3-7 If X and Y are independent random variables, 

 

(18) 
 
 

Var (X — Y) = Var (X) + Var (Y) or s2
—Y  = s2 + s2 (19) 

X X Y 

Generalizations of Theorem 3-7 to more than two independent variables are easily made. In 

words, the vari- ance of a sum of independent variables equals the sum of their variances. 

 
 

Standardized Random Variables 

Let X be a random variable with mean m and standard deviation s(s > 0). Then we can define an 

associated stan- dardized random variable given by 
 

X* = X —  

ms 
(20) 

 

An important property of X* is that it has a mean of zero and a variance of 1, which accounts for the 

name stan- dardized, i.e., 
E(X*) = 0, Var (X*) = 1 (21) 

The values of a standardized variable are sometimes called standard scores, and X is then said to be 

expressed in standard units (i.e., s is taken as the unit in measuring X – m). 

Standardized variables are useful for comparing different distributions. 

 
 

Moments 

The rth moment of a random variable X about the mean m, also called the rth central moment, is  

defined as 

mr = E[(X — m)r] (22) 

A 

Var (X + Y) = Var (X) + Var (Y) or s2
+Y = s2 + s2  

  X X Y 
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where r =  0, 1, 2,...... It follows that m0 = 1, m1 = 0, and m2 = s2, i.e., the second central moment or 

second 

moment about the mean is the variance. We have, assuming absolute convergence, 

mr = a(x — m)r f (x) (discrete 

variable) 
(23)

 
` 

mr =3 (x — m)r f(x) dx (continuous (24) 
—`variable) 

The rth moment of X about the origin, also called the rth raw moment, is 

defined as 

mrr = E(Xr) 

 

 
(25) 

where r = r c j r j c+ m = 0. 
0, 1, 2, . . m. , a=ndminr —this cas¢e th≤emrer aremfo+rmula+s a(n—alogo1u)s t¢o (2≤3m) randm(24+) in which 

The relationship between these moments is g(iv—en b1y)rmr mr 

 

 
r r 

1 
r—1 j r—j 0 

As special cases we have, using m1r = m and mr0 = 1, 

m2 = m2r — m2 

m3 = mr3 — 3mr2 m + 2m3 

m4 = mr4 — 4m3r m + 6m2r m2 

— 3m4 

(26) 

 

 

 

(27) 

 

Moment Generating Functions 

The moment generating function of X is defined by  

MX (t) = E(etX) (28) 

that is, assuming 
convergence, MX(t) = aetx f (x) (discrete 

variable) 
(29)

 
 

` 
MX(t) =3 

 
etx f (x) dx (continuous 

 
(30) 

—`variable) 

We can show that the Taylor series expansion is [Problem 3.15(a)] 

M  (t) =  1 +  mt +  mr  
t2   

+  c+  mr  
tr   

+ 

c 

 

 
 

(31) 

 
  

X 2 2! 

2 

r r! 

 

 

X 

Since the coefficients in this expansion enable us to find the moments, the reason for the name moment 

gener- 
ating function is apparent. From the expansion we can show that [Problem 3.15(b)] 

mr = 
dr 

M (t) 
(32)

 

r dtr  X t=0 

i.e., mrr is the rth derivative of MX (t) evaluated at t = 0. Where no confusion can result, we often write 

M(t) in- 
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stead of M (t). 
Some Theorems on Moment Generating Functions 

stants, then the moment generating function of (X + a) is 

M > (t) = eat>bM ¢ t ≤ 

(X+a) b X     b 
(33) 
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r
 

r 

 

Theorem 3-9 If X and Y are independent random variables having moment generating functions MX(t) 

and 

MY(t), respectively, then 

 

MX + Y (t) = MX (t) MY (t) (34) 

Generalizations of Theorem 3-9 to more than two independent random variables are easily made. In 

words, the moment generating function of a sum of independent random variables is equal to the 

product of their moment generating functions. 

Theorem 3-10 (Uniqueness Theorem) Suppose that X and Y are random variables having moment 

generat- ing functions MX (t) and MY (t), respectively. Then X and Y have the same 

probability distribu- tion if and only if MX (t) = MY (t) identically. 

 

 
Characteristic Functions 

If we let t = iv, where i is the imaginary unit, in the moment generating function we obtain an 

important func- tion called the characteristic function. We denote this by 

fX(v) =  MX(iv) =  E(eivX) 

 

 

 

(35) 

It follows 

that 

 
 

fX(v) =   aeivx f (x)  (discrete 

variable) 

 
(36) 

 

 
fX(v) = 

` 
3   eivx f (x) dx (continuous 

 
(37) 

—`variable) 

Since u eivx u = 1, the series and the integral always converge absolutely. 

The corresponding results (31) and (32) become 
 

fX(v) = 1 + imv — mr2 
v2   

+ c + irmr 
vr   

+ c 
r! 

mr = (—1)rir d 
f 

 

 

 

 

 
(38) 

wher 

e 
(v) 2 

 

r dvr X v=0 

 
(39) 

When no confusion can result, we often write f(v) instead of fX(v). 
Theorems for characteristic functions corresponding to Theorems 3-8, 3-9, and 3-10 are as follows. 

Theorem 3-11 If fX(v) is the characteristic function of the random variable X and a and b (b 2 0) are con- 

stants, then the characteristic function of (X +>   a) b is 

f(X   a)>b(v) =  eaiv>bfX ¢ 
v

≤ 

+ b 

 

 
(40) 

Theorem 3-12 If X and Y are independent random variables having characteristic functions fX (v) and fY (v), 

respectively, then 

 
 

fX+Y (v) =  fX (v) 

fY (v) 

(41) 

 

More generally, the characteristic function of a sum of independent random variables is equal to 

the product of their characteristic functions. 

Theorem 3-13 (Uniqueness Theorem) Suppose that X and Y are random variables having 
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characteristic func-  tions fX (v) and fY (v), respectively. Then X and Y have the 

same probability distribution if and only if fX (v) = fY (v) identically. 
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3 

 

 

An important reason for introducing the characteristic function is that (37) represents the Fourier 

transform of the density function f (x). From the theory of Fourier transforms, we can easily determine 

the density function from the characteristic function. In fact, 

1 
`
 

3 e—ivx 

fX (v) dv 

2p —` 

 

(42) 

which is often called an inversion formula, or inverse Fourier transform. In a similar manner we can 

show in the discrete case that the probability function f (x) can be obtained from (36) by use of 

Fourier series, which is the analog of the Fourier integral for the discrete case. See Problem 3.39. 

Another reason for using the characteristic function is that it always exists whereas the moment 

generating function may not exist. 

 

Variance for Joint Distributions. Covariance 

The results given above for one variable can be extended to two or more variables. For example, if X 

and Y are two continuous random variables having joint density function f (x, y), the means, or 

expectations, of X and Y are 
`  ̀

mX = E(X) = 
3 3 

—` 

` 
xf (x, y) dx dy, mY = E(Y) =3 

—` 

 
` 

3 yf (x, y) dx 
dy 

 

(43) 

 

and the variances are 

—` —` 

 

` ` 

X X X 

s2 = E[(X — m )2]3= 3 

dx dy 
(x — m )2 f(x, y) (44) 

—` —` 
` ` 

Y Y 3 3 Y 

s2 = E[(Y — m )2] = ( y — m )2 f (x, y) dxdy 

—` —` 

Note that the marginal density functions of X and Y are not directly involved in (43) 

and (44). 
Another quantity that arises in the case of two variables X and Y is the covariance 

defined by 

sXY = Cov (X, Y ) = E[(X — mX)(Y — mY)] 

In terms of the joint density function f (x, y), we have 
` 

 

 

 

 
 

(45) 

sXY = ` 

—`3 (x — mX)(y — mY) f 

(x, y) dx dy 

(46) 

—` 

Similar remarks can be made for two discrete random variables. In such cases (43) and (46) are 

replaced by 

mX = a a xf (x, y) mY = a ayf (x, 

y) (47) 

x y x y 

sXY = a a( x — mX)( y — 

mY) f (x, y) (48) 

x y 

 

where the sums are taken over all the discrete values of X and Y. 

f (x) = 
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The following are some important theorems on covariance. 
Theorem 3- 

14 
sXY = E(XY) — E(X)E(Y ) = E(XY) 

— mXmY 

(49) 

Theorem 3-15 If X and Y are independent random variables, 

then 

 
 

Theorem 3-16 

or 

 
 

Theorem 3- 

17 

sXY = Cov (X, Y ) = 

0 

Var (X ± Y ) = Var (X) + Var (Y ) ± 2 Cov (X, 

Y ) 

s2
±Y = s2 + s2 ± 2sXY 
X X Y 

ZsXY Z  Š 

sX sY 

(50) 

 
(51) 

(52) 

 
 

(53) 
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The converse of Theorem 3-15 is not necessarily true. If X and Y are independent, Theorem 3-16 

reduces to Theorem 3-7. 

 

Correlation Coefficient 

If X and Y are independent, then Cov (X, Y) = sXY = 0. On the other hand, if X and Y are completely 

dependent, for example, when X = Y, then Cov (X, Y) = sXY = sX sY. From this we are led to a 

measure of the dependence of the variables X and Y given by 

sX 

Y r = sX
 

sY 

(54) 

 

We call r the correlation coefficient, or coefficient of correlation. From Theorem 3-17 we see that 

—1 Š r Š 1. In the case where r = 0 (i.e., the covariance is zero), we call the variables X and Y 

uncorrelated. In such cases, however, the variables may or may not be independent. Further 

discussion of correlation cases will be given in Chapter 8. 
 
 

Conditional Expectation, Variance, and Moments 
If X and Y have joint density function f (x, y), then as we have seen in Chapter 2, the conditional density 

function 
> 

 

of Y given X is f ( y u x) = f (x, y) f1 (x) where f1 (x) is the marginal density function of X. We can 

define the con- ditional expectation, or conditional mean, of Y given X by 

E(Y u X = x) =3 
`
 

—` 

yf ( y u x) 

dy 

(55) 

where “X = x” is to be interpreted as x < X Š x + dx in the continuous case. Theorems 3-1 and 3-2 

also hold for conditional expectation. 
We note the following properties: 

1. E(Y u X = x) = E(Y ) when X and Y are independent. 

2. E(Y) = 
` 

3
—` 

E(Y u X = x) f1(x) dx. 

It is often convenient to calculate expectations by use of Property 2, rather than directly. 

 

EXAMPLE 3.5 The average travel time to a distant city is c hours by car or b hours by bus. A 

woman cannot decide whether to drive or take the bus, so she tosses a coin. What is her 

expected travel time? 

Here we are dealing with the joint distribution of the outcome of the toss, X, and the travel time, 

Y, where Y = Ycar if 

X = 0 and Y = Ybus if X = 1. Presumably, both Ycar and Ybus are independent of X, so that by 

Property 1 above 

E(Y u X = 0) = E(Ycar u X = 0) = E(Ycar) = c 

 

and E(Y u X = l) = E(Ybus u X = 1) = E(Ybus) = b 

Then Property 2 (with the integral replaced by a sum) gives, for a fair coin, 

E(Y) = E(Y u X = 0)P(X = 0) + E(Y u X = 1)P(X = 1) = 
c + b

 
2 

In a similar manner we can define the conditional variance of Y given X as 

E[(Y — m )2 u X = x] = 
`
 

2 3 (y — m2)2 f(y u (56) 
—`

x) dy 
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where m2 = E(Y u X = x). Also we can define the rth conditional moment of Y about any value a given 

X as 

E[(Y — a)r u X = x] =
3
`
 

—` 

( y — a)r f ( y u x) 

dy (57) 

The usual theorems for variance and moments extend to conditional variance and moments. 
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2 n 

S 

 

Chebyshev’s Inequality 

An important theorem in probability and statistics that reveals a general property of discrete or 

continuous ran- dom variables having finite mean and variance is known under the name of 

Chebyshev’s inequality. 

Theorem 3-18 (Chebyshev’s Inequality) Suppose that X is a random variable (discrete or 

continuous) having mean m and variance s2, which are finite. Then if P is any 

positive number, 
 

 

 
or, with P = 

ks, 

P( uX — m u  Š P) Š
P2 

s2 

 

P(uX — mu  Š  ks) Š 

1 

k2 

 
(58) 

 

 

 

(59) 

 

EXAMPLE 3.6 Letting k = 2 in Chebyshev’s inequality (59), we see that 

P (u X — m u Š 2s) Š 0.25 or P(u X — m u < 2s) Š 0.75 

 

In words, the probability of X differing from its mean by more than 2 standard deviations is less 

than or equal to 0.25; equivalently, the probability that X will lie within 2 standard deviations of 

its mean is greater than or equal to 0.75. This is quite remarkable in view of the fact that we have 

not even specified the probability distribution of X. 

 
Law of Large Numbers 

The following theorem, called the law of large numbers, is an interesting consequence of Chebyshev’s 

inequality. 

Theorem 3-19 (Law of Large Numbers): Let X̀1, X¢ ,
2 
. . . , X

2 
be m≤utually independent random variables (dis- 

crete or continuous), each having finite mean m and variance s2. Then if  Sn  = X1 + X2  + c+ 

Xn(n = 1, 2, c), 
 

 
nS lim P 

Sn 

n  — m   Š P = 0 (60) 
 

meSainncSenSnn >ndiisfftehreinagritfhrmometiictsmeexapneocfteXd1, v. a. l.u,eXmn, tbhyis mthoeoreretmhasntaPtesapthpartotahcehpersobzaebriolitaysonf Sthè .aArithsmtroetnicger 
result, > 

which we might expect to be true, is that limn >nS= m, but this is actually false. However, we can prove that 

> ` 

lnim Sn n = m with probability one. This result is often called the strong law of large numbers, and, by 

contrast, 
S` 

that of Theorem 3-19 is called the weak law of large numbers. When the “law of large numbers” is 

referred to 
without qualification, the weak law is implied. 

Other Measures of Central Tendency 

As we have already seen, the mean, or expectation, of a random variable X provides a measure of 

central ten- dency for the values of a distribution. Although the mean is used most, two other 

measures of central tendency are also employed. These are the mode and the median. 

1. MODE. The mode of a discrete random variable is that value which occurs most often or, in 

other words, has the greatest probability of occurring. Sometimes we have two, three, or more 

values that have relatively large probabilities of occurrence. In such cases, we say that the 

distribution is bimodal, trimodal, or multi- modal, respectively. The mode of a continuous 

random variable X is the value (or values) of X where the probability density function has a 

relative maximum. 
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2. MEDIAN. The median is that value x for which P(X < x) Š 1 and P(X > x) Š 1. In the case of acon- 

tinuous distribution we have P(X < x) = 1 = P(X > x 2 
2

 

2 ), and the median separates the density curve into 

two parts having equal areas of 1 2 each. In the case of a discrete distribution a unique 

median may not exist (see Problem 3.34). 
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Percentiles 

It is often convenient to subdivide the area under a density curve by use of ordinates so that the area 

to the left of the ordinate is some percentage of the total unit area. The values corresponding to such 

areas are called per- centile values, or briefly percentiles. Thus, for example, the area to the left of 

the ordinate at xa in Fig. 3-2 is a. For instance, the area to the left of x0.10 would be 0.10, or 10%, 

and x0.10 would be called the 10th percentile (also called the first decile). The median would be the 

50th percentile (or fifth decile). 
 

 

Fig. 3-2 

Other Measures of Dispersion 
 

 

Just as there are various measures of central tendency besides the mean, there are various measures 
of disper- sion or scatter of a random variable besides the variance or standard deviation. Some of 

the most common are the following. 

1. SEMI-INTERQUARTILE RANGE. If x0.25 and x0.75 represent the 25th and 75th percentile 

values, the 

difference x   — x is called the interquartile range and 1 (x — x ) is the semi- 

interquartile range. 
 

 

0.75  0. 

25 

2 0.75 0.25 

2. MEAN DEVIATION. The mean deviation (M.D.) of a random variable X is defined as the 

expectation of u X — m u , i.e., assumingconvergence, 

M.D.(X) = E [u X — m u] =  a u x — mu f 

(x) (discrete variable) (61) 
 

` 
M.D.(X) = E [u X — mu] = 3 

 
u x — mu f (x) 

 
(continuous variable) (62) 

—`dx 
 

Skewness and Kurtosis 

1. SKEWNESS. Often a distribution is not symmetric about any value but instead has one of its tails 

longer than the other. If the longer tail occurs to the right, as in Fig. 3-3, the distribution is said to be 

skewed to the right, while if the longer tail occurs to the left, as in Fig. 3-4, it is said to be skewed to 

the left. Measures describing this asymmetry are called coefficients of skewness, or briefly skewness. 

One such measure is given by 
 

E[(X — m)3]  m3 
  

a3 = 
s3 = 

s3 (63) 

The measure s3 will be positive or negative according to whether the distribution is skewed to the 

right or left, respectively. For a symmetric distribution, s3 = 0. 
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Fig. 3-3 Fig. 3-4 Fig. 3-5 

 

2. KURTOSIS. In some cases a distribution may have its values concentrated near the mean so that 

the dis- tribution has a large peak as indicated by the solid curve of Fig. 3-5. In other cases the 

distribution may be 
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= 

a 

d 

 

 

relatively flat as in the dashed curve of Fig. 3-5. Measures of the degree of peakedness of a 

distribution are called coefficients of kurtosis, or briefly kurtosis. A measure often used is given 

by 

E[(X — m)4] m4 

a4 = 
s4 = 

s4 (64) 

This is usually compared with the normal curve (see Chapter 4), which has a coefficient of kurtosis 

equal to 3. See also Problem 3.41. 
 
 

 SOLVED PROBLEMS  

 

Expectation of random variables 

In a lottery there are 200 prizes of $5, 20 prizes of $25, and 5 prizes of $100. Assuming that 

10,000 tickets are to be issued and sold, what is a fair price to pay for a ticket? 

Let X be a random variable denoting the amount of money to be won on a ticket. The various 

values of X together with their probabilities are shown in Table 3-2. For example, the 

probability of getting one of the 20 tickets giving a $25 prize is 20 10,000 = 0.002. The 
>
expectation of X in   ollars is thus 

E(X) = (5)(0.02) + (25)(0.002) + (100)(0.0005) + (0)(0.9775) = 0.2 

 

or 20 cents. Thus the fair price to pay for a ticket is 20 cents. However, since a lottery is 

usually designed to raise money, the price per ticket would be higher. 

 

Table 3-2 

 

x 
(dollars) 

5 25 100 0 

P(X = x) 0.0 
2 

0.00 
2 

0.000 
5 

0.977 
5 

 

Find the expectation of the sum of points in tossing a pair of fair dice. 

Let X and Y be the points showing on the two dice. 
We have 

E(X) = E(Y) = 1 ¢1 ≤ + 2¢1 ≤ c ¢1≤ 7 
+ + 6 = 

 

 
Then, by Theorem 

3-2, 

f (x) 
16 6 6 2 
2 

¢ 
1 

≤ 
 

E(X  +2 Y) = E4(X) + E(Y) = 7 
+ 3 

3.3. Find the expectation of a discrete random variable X whose proba4bility function is given by 

x 

 

 

 
 

We have 

+ 
8

 

 

2 
¢ ≤ 

4
 

 

` 
¢ 

1 
≤ 

x
 

1  

 
(x = 

 
1, 2, 3, c) 

 
 

E(X) = x 
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x=1 

 

 

¢ 
1 

≤ c 
 

 

8    1
+
6 

To find this sum, let S = 
1 

+ 2 ¢ 
1 

≤ 3 ¢ 
1 

≤ + 4 ¢ 
1 

≤ + c 
The 1 

S = 

8 16 1  
+ 2 ¢

1 
≤ + 3 ¢ 

1 
≤ + c 

n
Subtracting, 

1 
S = 

1 
+ 

1   
+ 

1   
+ 

 
1 

 
 

 
 

+ c= 1 

 
Therefore, S =2. 

2 2 4 8 16 
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4 

= = 

— 

) 

 

 

3.4. A continuous random variable X has probability density given by 

 

 

Find (a) E(X), (b) 

f (x) = 

 
= 2 e— 

2e—2x x  > 0 
e 

0 x  Š 0 
e—2x 0

 

E(X2). B  ` 
¢ 

`    
¢ 

` 

E(X) = 3 xf2(xx) dx = 3  x(2e—2x)̀dx = 2=3 2xe—2xdx 

 
(a) 

—` ≤ ≤R 2 
0 

3  (x) 
2 

1     
3 

= 2 B(x2)¢ 

e—2x 
≤

 

0 

 
 

— (1) 

¢ e
— 

2x  
≤ 

¢ e
—2x 

≤R 2 
` 1

 

(b 
E(X2) = 

`  
x2f (x) dx = 2 

—`    0 
—2 

`
x2e —2x dx 

3.5. The joint density function of two random var
—
ia

(
b
2
l
x
e
)
s X a4nd Y+is(g2i)ven—b8y = 

2 
xy>96 0 < x < 4, 1 < y < 5 

0

 

f (x, y) = e 
0 otherwise x ¢ 

xy 
≤ 

8
 

F(aind (a) E(X ), (b) E(Y ), (c) E(XY ), (d) E(2X + 3Y). 

) 

5 

96 
dx dy = 3 

(b) 
E(X) = 

` ` 
3 34 

 

 
3 3 

x 0 y 1 

xf (x, y) dx dy = 

 

96 
dx dy = 

9
 

3` 3` 3 35 xy 31    
—` 4—` ¢ ≤ 

E(Y) = yf (x, y) dxdy = y 
—`   —` x = 0  y 5= 1 xy 

 
¢ 

xy 
≤248 

 
` 

(c) E(XY) = 

 
` 4 

(xy) f (x, y) dxdy = 
(xy) 

4 
y = 1 

5
 96 

dx dy = 
27

 
47 

3 3 3 3 

 
(d E(2X + 3Y) 

) = 3 

—`   —` x = 03 

` ` (2x + 3y) f (x, y) dx 

3 dy = 

3 
 

(2x + 3y) 
96

 

y =¢1 ≤ 

 
dx dy = 3 

 

 

 

Another method 

—` —` x 

= 

0 

E(XY) = E(X)E(Y) =  ¢   ≤¢ ≤ 

 

8 31 248 

= 
(c) Since X and Y are independent, we have, using parts=(a) and (b), 

3 839 
27931 3 47 

E(2X + 3Y) = 2E(X) + 3E(Y) = 2 ¢ ≤ + 3 ¢ ≤ 
3.6. P(Ldre)otvBfey(TTxhh,eeyoo)rreebmmes3t3h--2e1, japonadigne3t-72p7,r.poabgaesb7il6i–ty77f,utongcettihoenr woifthX(aa) nanddY(b,)a, ssumed discrete. Then 

E(X + Y) =a a(x + y) f (x, y) 

x y 

= a axf (x, y) + a ayf (x, y)  

x y x y 
= E(X) + E(Y) 

If either variable is continuous, the proof goes through as before, with the appropriate 

summations replaced by 

integrations. Note that the theorem is true whether or not X and Y are independent. 
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¢ ≤ 

3 

 

 

Prove Theorem 3-3, page 77. 

Let f (x, y) be the joint probability function of X and Y, assumed discrete. If the variables X and 

Y are independent, 

we have f (x, y) = f1 (x) f2 ( y). Therefore, 

 

 
B R 

 

 

a 

E(XY) = a a xyf (x, y) = a a xyf1(x) f2 ( y) 

x y x y 

= a xf1(x)ayf2( y) 

x y 

= [(xf1(x)E( y)] 

x 

= E(X)E(Y) 

If either variable is continuous, the proof goes through as before, with the appropriate 

summations replaced by 

integrations. Note that the validity of this theorem hinges on whether f (x, y) can be expressed 

as a function of x 

multiplied by a function of y, for all x and y, i.e., on whether X and Y are independent. For 

dependent variables it 
is not true in general. 

6 >
 

Variance and standard deviation 

3.8. 
(
F
a
i
)
nd

RT(h
e
ae
f
)n
e
t,h
rbrey

in
vTa
ghrei

t
ao
o
nrec

Pme
r
,
o3(
b
b-4)
l,eth

m
e s

3
t
.
a
2
n
,
d
w
ard

e 
d
h
e
a
v
v
ia
e
ti
E
on

(X
o
)
f t

=
he

E
s
(
u
Y
m
) 

o
=
bt
1
ained in tossing a pair of fair dice. 

¢   ≤ ¢ ¢   ≤ 

Var (X) = Var (Y) = 
2. Moreover, 

6 2 

E(X2) = E(Y2) = 12  
1

 + 22    
1 

+ c+=6122 
1 

= 
91

 
6
91 7   2 35

6 6
 

≤ 
and, since X and Y are independent, Theorem 3-7 gives 

Var (X + Y) = Var (X) +—Var (Y) = 
35 

 

6 

(b) s X+Y = 2Var (X + Y) 35 
= A 6 

Find (a) the variance, (b) the standard deviation for the random variable of Problem 3.4. 

` 
¢ 1 

≤ 
2 

(a) As in Problem 3.4, the mean of X is m = E(X) = 1. Then the variance is 
 

2 

Var (X) = E[(X — m)2] = E B¢ 

X — 
1 

≤ 
2 

R 

= 
2 —  ̀

x — 2 
f (x) dx 

` 1 
2 

¢ x — ≤ —2x 1 

Another 

method 

By Theorem 

= 3 
0 

3-4, 

2 
(2e ) dx = 4 
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Var(X) = E[(X — 

m)2] = E(X2) — 

[E(X)]2 = 
1 

— ¢ 
1

 

≤ 
2 

  1 

(b) s = 2 Var (X) = 
A4 = 2 

1 1 

 

 

 
 

2 2 
= 

4 
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E [ X — m ) + (Y — m ) 

1) 

 

 

Prove Theorem 3-4, page 78. 

We have 

E[(X — m)2] = E(X2 — 2mX + m2) = E(X2) — 2mE(X ) + m2 

= E(X2) — 2m2 + m2 = E(X2) — m2 

=  E(X2) — [E(X)]2 
 

2 
Prove Theorem 3-6, page 78. 

E [(X — a)2] = E [ 5(X — m) + (m 6— a) ] 

= E [(X — m)2 + 2(X — m)(m — a) + (m — a)2] 

= E [(X — m)2] + 2(m — a)E(X — m) + (m — a)2 

= E [(X — m)2] + (m — a)2 
 
 

since E(X — m) = E(X ) — m = 0. From this we see that the minimum value of E[(X — 

a) 2] occurs when 

(m — a)2 = 0> , i.e., 

when a = m. 

¢  s ≤ = s [E(X — m)] = s [E(X) — m] = 0 

If X* = (X — m) s is a standardized random variable, prove that (a) E(X*) = 0, (b) Var(X*) = 

1. 
(a) E(X*) = 

E 
X — m 1 1 

(b) since E(X) = 

m. 
Var (X*) = Var ¢ 

X — m 
≤ =

 1 
E[(X — m)2] = 1 

s s2 

3.13. ProvuesiTnhgeoTrehmeo3r-7e,mpa3g-e57,8p. age 78, and the fact that E[(X —  m)2] = s2. 

(X + Y ) — (mX + mY) ] 

Var (X + Y ) = E [5( 
X Y

 2 2] 
26 2 

= E [5(X — mX) + 2(6X — mX)(Y — mY) + (Y — mY) ] 

using the fact 

that 

= E [(X — mX)2] + 2E[(X — mX)(Y — mY)] + E[(Y — 

mY)2] 

= Var (X ) + Var(Y ) 

E[(X — mX)(Y — mY)] = E(X — mX)E(Y — mY) = 0 

since X and Y, and therefore X — mX and Y — mY, are independent. The proof of 

(19), page 78, follows on 

replacing Y by —Y and using Theorem 3-5. 

Moments and moment generating functions 

Prove the result (26), page 79. 
¢
 

= E r 

r 
≤ X r—1m + c+  (—1) j ¢ 

r 
≤ X r—j m j 

mr = E[(X —  m)r] ≤ Xmr—1  +  (—1)rmrR 

X+  c+  (— 

—r—1   1 r 
j 

 

B 
¢ 

r — 1 



 

n 

+   + + 

= E(Xr) — 
r 

r—1 c j ¢ 
r   

89
 

≤ 
r—jj 

¢  ≤ E(X 

1 

)m 

+ (—1) j E(X 

CHAPTER 3 Mathematical Expectation 
)m + 

+  c+  (—1)rr—1 ¢ 
r 

≤ E(X )mr—1  +  (—1)rmr 
1 

+  c+  (—1)rr—— 1 

j 
1rmr + (—1)—rmr 

= mr — ¢ 
r 

≤ mr 1m + + (—1) j ¢ 
r 
≤ mr j m j r— 

c 
r— 

r—1 r 
where the last two terms can be combined to give (—l) (r — 1)m . 

Prove (a) result (31), (b) result (32), page 79. 

(a) Using the power series expansion for eu (3., Appendix A), we have 

M (t) = E(etX) = E 1 + tX + 
t2X2 

+ 
t3X3 

+ c 

¢       ≤ 

X 2! 3! 

= 1 + tE(X ) + 
t2 

E(X2) + 
t3 

E(X3) + c 
 

2! 3! 

= 1 + mt + mr 
t2 

+ mr 
t3 

+ c 
 

2 2! 3 3! 

(b) This follows immediately from the fact known from calculus that if the Taylor series of f (t) 

about t = a is 
` 

f (t) = a c (t — a)n 

 
 

n=0  n 

2 

then 

 
3.16. Prove Theorem 3-9, page 80. 

cn =n
1
! ddt

n 

f (t) 
t=a 

Since X and Y are independent, any function of X and any function of Y are independent. 

Hence, 

MX+Y (t) = E[et(X+Y )] = E(etXetY ) = E(etX )E(etY ) = 

MX(t)MY (t) 
3.17. The random variable X can assume the values 1 and —1 with probability 1 each. Find (a) the moment gen- 

erating function, (b) the first four moments about the origin. 2 

(a) E(etX) = et(1) 

 
1 1 

2 + et(—1)  
2

 

¢ ≤ 

= 
1 

(et + e—t) 
 

 
 

¢ ≤ 
 

 

 

 

 
(b) We have 

 

 

 

 
et = 1 + t 

 

 

 
t t2 

t  t  

2 
 

t3 t4 
c

 

 
 

e—t = 1 — t + 2! 
2 

2! 

— 

3! 4! 

3 4 — c 

3! 
+ 

4! 

 
  

+ 
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Then 

(1) 
1 

(et + e—t) = 1 + 
t2 

+ 
t4 

+ c 

2 2! 4! 

But 

(2) M (t) = 1 + mt + mr 
t2 

+ mr 
t3 

+ 

mr 

t4 
+ c

 

 

 
  

X 

 
 

Then, comparing (1) and (2), 

we have 

2 3 

2! 3! 

4 4! 

m = 0, m2r = 1, m3r = 0, m4r = 1, c 

The odd moments are all zero, and the even moments are all one. 
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(a) 3 

3 ) dx = 2 e3 

2 3 

2    

 

 

A random variable X has density function given by 
 

 
f (x) = 

e 2e—2xx Š 0 

0 x < 0 

Find (a) the moment generating function, (b) the first four moments about the origin. 

M(t) = E(etX ) = 
`
 

etx f (x) dx 
2 

      t — 2 0 

—` 

2 — t 

=  
`
etx(2e—2x 

` 
(t—2)x dx 

=  0 = ,  0assuming t < 2 

2e(t—2)x  ` 2 

(b) If |t | < 2 we have 
2 = 1 

> 
= 1 +

 t 
+ 

t2 
+ 

t3 
+ 

t4 
+ c 

But 
M
2 —

(t)
t 
= 11+—mt 2t + mr 

t22
+ m

4
r 

t3 8
+ mr

16t4 
+ c 

2 2! 3 3! 4 4! 

Therefore, on comparing terms, m = 1, mr = 1, mr = 3, mr = 3. 

f (x) = e 
81  0 Š x Š 3 

24x(29 —2x
2)>3 4   4 2 

Find the first four moments (a) about the origin, (b) about the mean, for a random variable X having den- 

sity function 

0 otherwise 

(a) m1r = E(X) =
 4 

3  x
2(9 — x2) dx =  

8  
= m 

3 

81  0 5 

mr = E(X2) =
  4  3 

x3(9 — x2) dx = 3 

81 0 

mr = E(X3) =
 4 

 
3 

x4(9 — x2) dx = 
216

 

(b) Using the result (27), pag3e 79, wehave 

m = 0 

3 

81  0 35 1 

 4  3 27 

mr4   = E(X4) = 3   x5(9 — x2) dx = 

81  0 2 

m2 
= 3 — ¢58 

≤
= 1215 = s2 

m = 
216 

— 3(3) ¢ 
8 

≤ ¢ 
8 

≤ 
 32 

 

3 35 5 
+ 2 

5 3 
= —

875 

= 
27 

— 4 ¢ 
216

 ≤¢ 
8 

≤ + 6(3) ¢ 
8 

≤ 
2

 

 
3693 

m4 2 35 5 

— 3 ¢ 
8 

≤ 
4

 

5 5 
= 

8750 

Characteristic E(eivX ) = eiv(1) ¢ 1 ≤ iv(—1) ¢ 1 ≤  1 iv iv 
f3u.2n0c. tFiionndsthe characteristic function of the random variable X of Problem 3.17. 

The characteristic function is given by 
 

2 
+ e 

2 
= 2 (e   + e ) = cos v 
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3 

3 

0 

` 

0 

 

 
using Euler’s formulas,  

eiu = cos u + i si 

 
nu e—iu = cos u — i sin u 

 

 
 

> 

with u = v. The result can also be obtained from Problem 3.17(a) on putting t = iv. 

Find the characteristic function of the random variable X having density function given by 

f (x) = e1  2a Z x Z < a 

0 otherwise 
The characteristic function is given by 

Find the characteristic function of the random variable X having density function f (x) = ce–a|x|, 

E(eivX) = 
`
 

 
 

eivx dx 
3 

= 
iv 

2
 = a = 

eivx f (x) dx = 
1

 

—` 2a —a 

1 eivx a eiav — 

e—iav 

2a —a 2iav 

using Euler’s formulas (see Problem 3.20) with u = av. 

—` < x < `, where a > 0, and c is a suitable constant. 

Since f (x) is a density function, we must have 

` 

 

 
sin 

av 

av 

3  
f (x) dx = 1 

so 

that 

—` 0 

c  
—`

e—aZxZ dx — 

` 

—a(x) 

= c a(— dx + 3 e dx 
` 

E(e 
3
 

B 
—`

ex)    R 
 

 

) = 3 e f (x) edaxx 0 e—ax ` 2c 

B
= c a 2 + c —a 

2 = 
—` 0 

a = 1
R

 

Then c = a >2. The characteristic function is therefore given by 
 

ivX 
=  2   iv3x e dx + 3 

—` e 

dx R 

= a 0 2   + a ` 2 
=2 

2
a +3 iveivxe—a(—x—) dx(a+—3eivixve—) a(x) dx 

Covariance and correlation coefficient 
—` 0 

` 

Prove Theorem 3-14, page 81. a (a+iv)x 
  `  

—(a—iv)x0 

By definition the covariance of X an—d̀  Y is  0 a a2 
 

sXY = Cov
a e

((Xa+, ivY)x )0  =+E[(X — m=X)(
a
Y2  —v

m2   Y)] 
e—(a—iv)x + 

= E[XYa — mXY — mYX + mXmY] = 
2(a + iv) 

—` 
2(a — iv) 

= E(XY ) — mXE(Y ) — mYE(X ) + E(mXmY) 

= E(XY ) — mXmY — mYmX + mXmY 

= E(XY ) — mXmY 

= E(XY ) — E(X )E(Y ) 



92 CHAPTER 3 Mathematical Expectation 

 

x     y y x 

XY 2 2 2 = 
= 

63 

= —0.2103 approx. 

 

 

Prove Theorem 3-15, page 81. 

If X and Y are independent, then E(XY) = E(X )E(Y ). Therefore, by Problem 3.23, 

sXY = Cov (X, Y ) = E(XY ) — E(X )E(Y ) = 0 
 

3.25. Find (a) E(X), (b) E(Y), (c) E(XY), (d) E(X2), (e) E(Y2), (f) Var (X), (g) Var (Y), (h) Cov (X, Y), (i) r, if the 

random variables X and Y are defined as in Problem 2.8, pages 47–48. 

(a) E(X ) =   a axf (x, y) =   ax Bf a  (x, y)R    

x     y x y 58 29 
= (0)(6c) + (1)(14c) + (2)(22c) = 58c = 

 
E(Y ) = a a yf (x, y) = a y a f 

= 

 
42 21 

(b)  (x, y) B R 

x y y x 

= (0)(6c) + (1)(9c) + (2)(12c) + (3)(15c) = 78c = 
78 

= 
13

 

42 7 

(c) E(XY ) = 
a a 

xyf (x, y) 

x y 
= (0)(0)(0) + (0)(1)(c) + (0)(2)(2c) + (0)(3)(3c) 

+ (1)(0)(2c) + (1)(1)(3c) + (1)(2)(4c) +  (1)(3)(5c) 

+ (2)(0)(4c) + (2)(1)(5c) + (2)(2)(6c) +  (2)(3)(7c) 

= 102c = 
102 

= 
17

 

= (0)2(6c) + (1)2(14c) + (2)2(22c) = 102c = 
102 

= 
17

 
42 7 

(d) E(X2) =x  ay a x2 f(x, y)x =  
B 
ay 

a x2 

f (x, 
R
y)  

 

42 7 

(e) E(Y2) =   a a y2 f (x, y) =   ay2 Ba f (x, y)R        

(g) s2 = Var (Y ) = E(Y2) — [E(Y )]2 = 
32 

— ¢ 
13 

≤ 
55

 

2 
= (0)2(6c) + (1)2(9c) + (2)2(12c) + (3)2(15c) = 192c = 192 

= 
32 

 
(h) (f) s = Var(X) = E(X ) — [E(X)] = 

 
177 

 
— ¢ 

2291≤ 

42 7 

2   7 230= —
147 

 
 

 
 

r = 
XXY              

=
  >147   —270 21441 

s = Cov(X, Y ) = E(XY ) — E(X )E(Y ) = 
17

 

— ¢ 
29 

≤¢ 
13 

≤ 

Y 7 7 
= 

49 

 20  

2 > 255 >49 2230 255    

3.26. Work Problem 3.25 if the random variables X and Y are defined as in Problem 2.33, pages 61–63. 

(Ui)sing c = 1 s E(X ) = —206 
5 

(x)(2x + y) dx dy = 
268

 

(a) sXs1Y 
230 4341 3 

x y 

 

 

(b) 

 

>210, wehave: 
 

210 

E(Y ) =
 1 

6 
3 

= 5= 

2 0 

3 (y)(2x + y) dx dy = 
170

 

210  x 

= 

2 

y = 0 63 
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3 3 

 

(c) E(XY ) =
 1  6 5

 

 

(xy)(2x + y) dx dy = 
80

 

210  x = 2 y = 0 7 
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x = 2 

X Y 

2 

3 

 

 
(d) 

E(X2) =
 1 

 
6 

3 

3 (x2)(2x + y) dx dy = 
1220

 

5 

210 x = 2 y = 0 63 

(f ) 6 5 

(e) E(Y2) = 
1

 3 3 1175 
2 y = 0(y )(2x + y) dx dy = 

 

210 
s2 = Var(X ) = E(X 2) — [E(X )]2 = 

126 5036 

(g) 
1220 

2 

— ¢ 268 ≤ 

= 
3969 

 

X 63 63 = 
7938 

Y 126 63 

—200>3969 
= 2 

 

= 
—2020 

= —160,.02321529 approx. 
 

 

s = Var(Y) = E(Y ) — [E(Y )] = 

1175 
— ¢ 170 ≤ 

2
 

(h) 
s = Cov(X, Y ) = E(XY ) — E(X )E(Y) = 

80 
—
  

  200  

s¢
X2sY 68 ≤¢ 170 ≤ 7 63 

= —
3969 

sXY   25036>3969216,225>7938 22518216,225 

Cond
(
i
i
t
)
ional e

r
x
=
pectation, variance, and moments 

3.27. Find the conditional expectation of Y given X = 2 in Problem 2.8, pages 47–48. 

As in Problem 2.27, page 58, the conditional probability function of Y given X = 2 is 

4 + y 

f ( y u2) = 
 

 

Then the conditional expectation of Y given X = 2 

is 

E(Y u X  = 2) = 

22 

y
¢4 + y ≤ 

a 22 

y 
 

where the sum isE(tYaku Xen=o2v)e=r a(l0l) ¢y co≤rr+es1p¢ond≤ing to¢ X =≤     2. T¢his ≤is given by 

 

 

     ¢ ≤  

3.28. F(ai)nd the conditional expectation of (a) Y given X, (b) X given Y in Pdryo=blem 2.29, pages 58–59. 

`  ` 
x 2y 2x 

(b) E(Y u X = x) 3 yf2(y u x) dy = y 
2 

—` 0 x 
≤ 1 2x 

E(X uY = y) = 3    xf1(x u y) dx = 3 x 
—` y 

1 — y2 
dx

 

32((11——y3)   y22)(13(+1 y++yy2)) 
= = 

3.29. Find the conditional variance of Y given X for Problem 2.29, pages 58–59. 

The required variance (second moment about the mean) is given by 

 

` x 2 2y 
u ¢ ≤   ¢ ≤ 

2 2 3 2 2 32 3 
2 

dy = 18 2x x2 
E[(Y — m ) u X = x] = —` (y — m ) 0f (y x) dy =x y — 

 

where we have used the fact that m = E(Y u X = x) = 2x >3 from Problem 3.28(a). 

63 

3 

¢ 

 4  5  6  7 19 

22 22 
+ 2  22 + 3  

22 
= 

11 
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2 

 

Chebyshev’s inequality 

Prove Chebyshev’s inequality. 

We shall present the proof for continuous random variables. A proof for discrete variables 

is similar if integrals are replaced by sums. If f (x) is the density function of X, then 

s2 = E[(X — m)2] (x — m)2f (x) dx 

` 3 

= 
—` 
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S 

 

 

Since the integrand is nonnegative, the value of the integral can only decrease when the 

range of integration is diminished. Therefore, 

s2 Š
3

 

ux — mu ŠP 

(x — m)2f (x) d
3
x Š 

ux — mu ŠP 

P2f (x) dx = 

P2 
3

 

 
 

ux — 

mu ŠP 

 

f (x) dx 

But the last integral is equal to P( u X — mu Š P). Hence, 

P( uX — m u  Š P) Š  
s2

 

For the random variable of Problem 3.18, (a) find P( u
P
X
2   

— mu  > 1). (b) Use Chebyshev’s 

inequality to ob- tain an upper bound on P( u X — mu > 1) and compare with the result in (a). 

(a) From Problem 3.18, m = 1 2. Then 

P( uX >— m u  < 1) = P X —  
1   

< 1 = P   
1  3

 

2 
—

2
< 

2 

 

 

 
 

Therefo 

re 

¢ 2 2 ≤ ¢ X < ≤ 

3>2
2e—2x dx = 1 — e—3

 

= 3 0 

P ¢ 2 X — 
1 2 Š 1 =≤ 1 — (1 — e  —)3= e —3= 0.04979 

2 

(b) From Problem 3.18, s2 = m2r — m2 = 1 4. Chebyshev’s inequality with P = 1 then gives 

P( u X — mu Š 1) Š s 
2 = 0.25 

 

Comparing with (a), we see that the bound furnished by Chebyshev’s inequality is here 

quite crude. In practice, Chebyshev’s inequality is used to provide estimates when it is 

inconvenient or impossible to obtain exact values. 

 
Law of large numbers 

Prove the law of large numbers stated in Theorem 3-19, page 83. 

We 

have 
E(X1) = E(X2) = c = E(Xn) = m 

Var (X1) = Var (X2) = c = Var (Xn) = s2 

S X  + c + X 1 1 

Then 
E ¢ n

n  
≤  = E 1 n n       =  n [E(X1   ) +c¢ 

≤ 

+ E(Xn )] = n(nm) = m 

Var (Sn) = Var (X1 + c + Xn) = Var (X1) + c + Var (Xn) = ns2
 

Var ¢ ≤  Var ( ) 
n 1 s 

so that n = 
n2 

> 
Sn = n 

where we have used Theorem 3-5 and an extension of Theorem 3-7. 

Therefore, by Chebyshev’s inequality with X = Snn, we have 
 

P ¢ 2 — m 2  Š P ≤  Šn 

Sn
2nP 

s2 

 

Taking the limit as n S `, this lbimecPo¢m2 

 
n 
S` 

ens, as 2requ≤ired, 
S 
— m  Š P = 0 

n 

Other measures of central 

tendency 

2 
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= e 

3.33. The density function of a continuous random variable X is 
4x — x2)> 81 0 Š x Š 3 

f (x) 
(9

 0 otherwise 

(a) Find the mode. (b) Find the median. (c) Compare mode, median, and mean. 
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81 

 d 
B 

4x(9 — 

(a) The mode is oxb2ta)ined by finding where the density f (x) has a relative maximum. The relative maxima of 

f (x) occur where Rthe derivative is zero, i.e., 

    = 36 — 12x=2  0 

dx 81 

Then x = !3 = 1.73 approx., which is the required mode. Note that this does give the maximum since 

the second derivative, —24x>81, is negative for x = !3>.2 

(b) The median is that value a for which P(X Š a) = 1 . Now, for 0 < a < 3, 

4    a 4  
¢ 

9a2 a4 
≤

 
P(X Š a) = 

81 3 x(9 — x2) dx = 
81 2 

— 
4
 

 

Setting this equal to 1>2, we find that  
2a4  — 36a2  + 81 = 0    

 

from which  

 
a2 = 

 
36 ± 

2 

 

(36)2— 4(2)(81) 
= 

36 ± 2648 
= 9 ± 

9 
22

 

 
 

2(2) 4 2 

Therefore, the required median, which must lie betwe2en 0 and 3, is given by 
 

a2  = 9 — 
9
 

2 
 

2 

from which a = 1.62 
3 

2 2 4 3 x5 
2 
3 

(c) approx. 

E(X ) =
 4

 

x (9 — x ) dx = ¢ 3x  — ≤ 
 

 

0 

81 3 81 

5 

 

= 1.60 

0 

which is practically equal to the median. The mode, median, and mean are shown in Fig. 

3-6. 
 

Fig. 3-6 

 

 
3.34. A discrete random>variable has probability function f (x) = 1 >2x    where x = 1, 2, ......... Find (a) the mode, 

(b) the median, and (c) compare them with the mean. 
 

> 

2 could represent the median. For convenience, we choose the midpoint of the interval,  
(a) The mode is the value x having largest associated probability. In this case it is x = 1, for which the 

0 
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i.e., 3 2. 

(c) As found in Problem 3.3, m = 2. Therefore, the ordering of the three measures is just 

the reverse of that in Problem 3.33. 



 

8 

> 

4x 

Det1er0mine the (a) 10th, (b) 25th, (c) 75th percentile values foCr tHheAdPisTtrEibRut3ion oMf aPtrohbelmema3t.i3c3a.l Expectation 

From Problem 3.33(b) we have 

P(X Š a) =
 4 

¢ 
9a2 

— 
a4 

≤ = 
18a2 — a4

 
Percentiles  

   

81 2 4 81 
 

(a) The10thpercentileisthevalueofaforwhichP(X Š a)=0.10,i.e.,thesolutionof(18a2 —a4)>81=0.10. 

Using the method of Problem 3.33, we find a = 0.68 approx. 

(b) The 25th percentile is the value of a such that (>1881 a20—.25, aand4w) e find a = 1.098 a=pprox. 

(c) The 75th percentile is the value of a such that>8(118=a02.75—, andaw4e)find a = 2.121 approx. 
 

Other measures of dispersion 

Determine, (a) the semi-interquartile range, (b) the mean deviation for the distribution of Problem 3.33. 

(a) By Problem 3.35 the 25th and 75th percentile values are 1.098 and 2.121, respectively. 

Therefore, 

Semi-interquartile range2=.121 —  1.09=80.51 approx. 

2 
>5. Then 

(b) From Problem 3.33 the mean is m = 1.60 = 8 

` 

Mean deviation = M.D.5E(uX — m u ) =  3 
—  ̀

 
 
u x — mu f(x)dx 

=  3 2 x —3 5 
2 B 

841x 
(9 — x ) R dx 

2 

0 
3
 

=   8>5    
8

 

 

8 4x 

3 ¢5 — x ≤B 81 (9 — x2) R dx + 3 ¢ x — 5 ≤B 81 (9 — x 2) R dx 

0 8 5 

 

= 0.555 approx. 

 

Skewness and kurtosis 

Find the coefficient of (a) skewness, (b) kurtosis for the distribution of Problem 3.19. 

From Problem 3.19(b) we have 

 

 
 

(a) Coefficient of 

2 11 

s  = 25 

 
= m3 

 32 

m3 = — 

875 

3693 
m4

=
8750 

skewness 

(b) Coefficient of 

kurtosis 

a3 = 
s3 = —0.1253 

= m4 

a4 = 
s4 = 2.172 

It follows that there is a moderate skewness to the left, as is indicated in Fig. 3-6. Also 

the distribution is somewhat less peaked than the normal distribution, which has a 

kurtosis of 3. 

 

Miscellaneous problems 

If M(t) is the moment generating function for a random variable X, prove that the mean is m = Mr(0) 

and the variance is s2 = Ms(0) — [Mr(0)]2. 
From (32), page 79, we have on letting r = 1 and r = 2, 

m1r = Mr(0) m2r = Ms(0) 
 

Then from 

(27) 

m = 

Mr(0) 

 
m2 = s2 = Ms(0) — [Mr(0)]2 
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   3 

2 2 

= 

 

 
Let X be a random variable that takes on the values xk = k with probabilities pk where k = ±1, . . . , ± n. 

(a) Find the characteristic function f(v) of X, (b) obtain pk  in terms of f(v). 

(a) The characteristic function is 

f(v) = E(eivX) 

n eivx 
= 
n pkeikv 

=  a k pk 
a 

k=—n k=—n 

 

(b) Multiply both sides of the expression in (a) by e—ijv and integrate with respect to v from 

0 to 2p. Then  
3

2p 

 
e—ijvf(v) dv = 

 
n 

 
k=—n 

2p 

v= 0 

v= 0 

 

2p 

pk 3 

2 
• ei(k—j)v 

 
 

ei(k—j)v dv = 2ppj
 

since 3 ei(k—j)v dv = 

v= 0    
 

pj = 
1

 

2i(pk — j)  
2p

 

0 
= 0    k 2 j 

k = j 

Therefor 

e, 
2p e—ijvf(v) dv 

3 
2p v= 0 

 

or, replacing j 

by k, 
pk =

 1 

2p 
3 

 

e—ikvf(v) dv 

2p  v= 0 

We often call gnp eikv (where n can theoretically be infinite) the Fourier series of f(v) and 

p the  

k=—n   k k 

Fourier coefficients. For a continuous random variable, the Fourier series is replaced by 

the Fourier integral (see page 81). 

Use Problem 3.39 to obtain the probability distribution of a random variable X whose characteristic 

func- tion is f(v) = cos v. 

From Problem 3.39 

pk = 
1

 
2p e—ikv cos v 

dv 
e—ikv eiv 

=
 1 

3
 

2p 

v= 0 

2p 

v= 0 

+ e—iv 

B  R 

2 dv 

=
 1  2p ei(1—k)v dv + 

3 
1  2p e—i(1+k)v dv 

3 
4p  v= 0 4p v= 0 

 

If k = 1, we find p1 = 1; if k = —1, we find p—1 = 1. For all other values of k, we have p k = 0. Therefore, the 

 

random variable is given by 
X e    

1 probability 1 2 

> 

2p 
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—1   probability 12 

As a check, see Problem 3.20. 

3.41. Find the coefficient of (a) skewness, (b) kurtosis of the distribution defined by the normal curve, having 

density 

1 
—x2>2 

 

f (x) =
 22p 

e —` < x < ̀  

(a) The distribution has the appearance of Fig. 3-7. By symmetry, m1r = m = 0 and mr3 = 

0. Therefore the coefficient of skewness is zero. 
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Y 

2 2 

` 

 

 

 
 

 

 
(b) We 

have 

Fig. 3-7 

2  —x2 2 2 

—` 
 
2p 0 

x2e—x 2 dx 
x e 

 

1 ` 
m  = E(X2) =  33 >

 
 

 

>2 dx = 3 
>

 

2 

r2 
2 ≤ ¢ ≤ 

2p 2 

= 2 v
 ̀2e—v dv 

1 

p 0 
    

=   2 T 3 = 
2 

? 
1 

T 
1 

= 1 
¢ 

2p p 2 

where we have made the 

transformation x2 
>

2 = v and used prop2er2tieps of the gamma function given in (2) and 

x e 2 dx =   x4e—x 2 dx 

2p 
(5) of Appendix A. Similarly we obtain   1 4 

0 

` 
2> 

r 4    
2 

m4 = E(X ) = p  

v3 2e—v dv 2 
` 
—` 

= 
4 

3
 

0 

2 

¢ 
2 

 
 

> 

— 2 

x2> 

≤ 

 

 
 

¢ ≤ 
3 1 

T
 

 

=
  4 

T  
5 

=
  4 ? ? 

1 
= 3 

 
Now 

p 2 p 2 2 2 

s2 = E[(X — m) 2] = E(X )2 = mr2 = 1 

m4 = E[(X — m)4] = E(X4) = m4r = 3 

Thus the coefficient of kurtosis is 

 
 

3.42. Prove that —1 Š r Š 1 (see page 

82). 

 

m4 

s4 = 3 

For any real constant c, we have 

 
 

Now the left side can be 

written 

 

E[{Y — mY — c(X — 

m)}2] Š 0 

Y 

 

X ¢ c 

— 
s2 ≤ 

 
 

 
s 

 
 

 
  

E[(Y — mY)2] + c2E[(X — mX)2] — 2cE[(X — mX)(Y — m 
¢
)] = s2 + c2s2 — 2csXY 

Y X c — 
s2 ≤ 

3 3 

` 
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X — 
s2 

= s2 + s2 2 2csXY 
X 

c — 
= s2 + s2 2 sXY 2 
= 

s2s2 s—2    s2 X2 XY 

X X 
ssX2 Y 2 

X Y XY + s2 

X X 
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0 otherwise 

e > 

e 5 

e 

 

 

In order for this last quantity to be greater than or equal to zero for every value of c, we must 

have 

s2 Y 

s2s2  — s2 Š 0 or X Š 1 
 

X Y   XY s2 s2 

X Y 

which is equivalent to r2 Š 1 or —1 Š r Š 1. 
 

 

 

 SUPPLEMENTARY PROBLEMS  
 

Expectation of random variables 

—2 prob. 1 3 

3.43. Arandomvariable X isdefinedby X = •    3 prob. 1>2. Find (a) E(X ), (b) E(2X + 5), (c) E(X2). 

Let X be a random variable defined by
1
the

p
d
ro
e
b
n
.
s
1
i
>
t
6
y function f (x) =  e 

3x2 0 Š x Š 1
 

 

Find (a) E(X ), (b) E(3X — 2), (c) E(X2). 0 
 

The density function of a random variable X is f (x) = e 
e—x x Š 0 

. 

Find (a) E(X ), (b) E(X2), (c) E[(X — 1)2]. 

 
 

What is the expected number of points that will come up in 3 successive tosses of a fair die? 

Does your answer seem reasonable? Explain. 

 

A random variable X has the density function f (x) = 
e—x x Š 0

. Find E(e2X 3). 

0 x < 0 

 

Let X and Y be independent random variables each having density function 

f (u) =  
2e—2u u  Š 0 

e 
0 otherwise 

Find (a) E(X + Y ), (b) E(X2 + Y2), (c) E(XY ). 

Does (a) E(X + Y ) = E(X ) + E(Y ), (b) E(XY ) = E(X )E(Y ), in Problem 3.48? Explain. 

 

Let X and Y be random variables having joint density function 
3 x(x + y) 0 Š x Š 1, 0 Š y Š 2 

f (x, y) = 

0 otherwise 

Find (a) E(X ), (b) E(Y ), (c) E(X + Y ), (d) E(XY ). 

 

Does (a) E(X + Y ) = E(X ) + E(Y ), (b) E(XY ) = E(X )E(Y ), in Problem 3.50? Explain. 

 
Let X and Y be random variables having joint density 

f(x, y) =  
4xy  0 Š x Š 1, 0  Š y  Š 1 

0 otherwise 
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Find (a) E(X ), (b) E(Y ), (c) E(X + Y ), (d) E(XY ). 
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Does (a) E(X + Y ) = E(X ) + E(Y ), (b) E(XY ) = E(X ) E(Y ), in Problem 3.52? Explain. 

 
1 (2x + y)0 Š x Š 1, 0 

 

 
Let f (x, y) = 

4 

Š y Š 2 

 

0 otherwise 

. Find (a) E(X ), (b) E(Y ), (c) E(X2), (d) E(Y2), 

(e) E(X + Y ), (f ) E(XY ). 

Y =  e 
2 prob. 3>4 

1 prob.
—

1
3
>2 

prob. 1>4 

Find (a) E(3X + 2Y), (b) E(2X2 — Y2), (c) E(XY), (d) E(X2Y). 
Let X and Y be independent random variables 

such that 1 prob. 1> 
3.56.  Let X1, X2, . . . , Xn be n random variablees which are id3entically distributed such that 

X =   0 prob. 2> 

3 

Xk = • prob. 1  3 
> 

 

6 

Find (a) E(X 2 

+ X —1 prob. 1 

+  c+ X  ), (b) E(X2  +  X2  +  c+  X2). 

l 2 n 1 2 n 
 

Variance and standard deviation 

Find (a) the variance, (b) the standard deviation of the number of points that will come up on a 

single toss of a 

fair die. 

 

Let X be a random variable having density function 

1> 

 
Find (a) Var(X ), 

(b) sX. 

f (x) = 

e 

4 —2 Š x Š 2 

0 otherwise 

 

Let X be a random variable having density function 

f (x) = 
e—x x  Š 0

 
e 

0 otherwise 

Find (a) Var (X ), (b) sX. 

Find the variance and standard deviation for the random variable X of (a) Problem 3.43, (b) 

Problem 3.44. 

 

A random variable X has E(X ) = 2, E(X2) = 8. Find (a) Var(X ), (b) sX. 

If a random variable X is such that E[(X — 1)2] = 10, E[(X — 2)2] = 6 find (a) E(X ), (b) 

Var(X ), (c) sX. 
 

Moments and moment generating functions 

 

 

X = 
e

 

 

 
> > 

1 

2 prob. 1>2 

e 
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and (b) the first four moments about 

the origin. 

2 prob. 1 2 

—1 
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(a) Find the moment generating function of a random variable X having density function 

 

f (x)=  e 
2x>  0 Š x  Š 2 

0 otherwise 

 

(b) Use the generating function of (a) to find the first four moments about the origin. 

 

Find the first four moments about the mean in (a) Problem 3.43, (b) Problem 3.44. 

 

(a) Find the moment generating function of a random variable having density function 

f (x) = 
e—x x  Š 0

 
e 

0 otherwise 

and (b) determine the first four moments about the origin. 
 

In Problem 3.66 find the first four moments about the 

mean. 

 

Let X have density function f (x)
1>

= e 
(b —

 

a) a Š x Š b 

 

 

 
kth moment about (a) the origin, 

 
(b) the 

mean. 

0 

otherwi 

se 

. Find the 

 
 

If M(t) is the moment generating function of the random variable X, prove that the 3rd and 

4th moments about the mean are given by 

m3 = M-(0) — 3Ms(0)Mr(0) + 2[Mr(0)]3 

m4 = M(iv)(0) — 4M-(0)Mr(0) + 6Ms(0)[Mr(0)]2 — 3[Mr(0)]4 

Characteristic functions 

Find the characteristic function of the random variable X = 
a prob. p 

. 
e b prob. q = 1 — p 

 
3.71. Find the characteristic function of a random variable X that has density function 

1 2a u x>u Š a 
f (x) = e 

0 otherwise 

3.72. Find the characteristic function of a random variable with density function 

1 prob. 

1> 

2 

f (x) =  e>
x  2 0 Š  x Š  2 

0 otherwise 

function of the random 
variable 2 

X1 + X2 + c + Xn 

3.73. Let Xk = e 
—1 prob. 1> be independent random variables (k = 1, 2, . . . , n). Prove that the characteristic 

n 

 
>! 

is [cos (v n)]n. 

Prove that as n S ` the characteristic function of Problem 3.73 approa> ches e—v2  2. (Hint: 

Take the logarithm of the characteristic function and use L’Hospital’s rule.) 
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Covariance and correlation coefficient 

Let X and Y be random variables having joint density function 

f (x, y) = 
x + y  0 Š x Š 1,  0 Š y Š  1 

e 0 otherwise 

Find (a) Var (X ), (b) Var (Y ), (c) sX, (d) sY, (e) sXY, (f ) r. 

Work Problem 3.75 if the joint density function is f (x, y) =   
e—(x+y) x Š 0, y Š 0

. 
e 

0 otherwise 

Find (a) Var(X), (b) Var(Y ), (c) sX, (d) sY, (e) sXY, (f ) r, for the random variables of Problem 

2.56. 

 

Work Problem 3.77 for the random variables of Problem 2.94. 

 

Find (a) the covariance, (b) the correlation coefficient of two random variables X and Y if E(X ) = 

2, E(Y ) = 3, 

E(XY) = 10, E(X2) = 9, E(Y2) = 16. 

 
The correlation coefficient of two random variables X and Y is —1 while their variances are 3 and 

 

5. Find the 
4
 

covariance. 

 

Conditional expectation, variance, and moments 

Let X and Y have joint density function 

f (x, y) = 
x + y 0 Š x Š 1, 0 Š y Š 1 

e 0 otherwise 

Find the conditional expectation of (a) Y given X, (b) X given Y. 

 

Work  Problem 3.81 if f (x, y) = 
2e—(x+2y) x Š 0, y Š 0

 
e 

0 otherwise 

Let X and Y have the joint probability function given in Table 2-9, page 71. Find the conditional 

expectation of 

(a) Y given X, (b) X given Y. 

 

Find the conditional variance of (a) Y given X, (b) X given Y for the distribution of Problem 3.81. 

Work Problem 3.84 for the distribution of Problem 3.82. 

Work Problem 3.84 for the distribution of Problem 2.94. 

 

Chebyshev’s inequality 

A random variable X has mean 3 and variance 2. Use Chebyshev’s inequality to obtain an upper 

bound for 

(a) P( u X —3 u Š 2), (b) P( u X — 3 u Š 1). 

 

Prove Chebyshev’s inequality for a discrete variable X. (Hint: See Problem 3.30.) 

 

A random variable X has the density function f (x) = 1 e—|x|, —` < x < `. (a) Find P( u X — mu 
 

> 2). (b) Use 
2

 

Chebyshev’s inequality to obtain an upper bound on P(u X — m u > 2) and compare with the 
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result in (a). 
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Law of large 

numbers 

lim P ¢ 2 
Sn 2 ≤ 

3.90. Show that the (weak) law of large numbers can be stated as 

nS` 
n — m < P = 1 

and interpret. 

 

 
3.91. Let Xk (k = 1, . . . , n) be n independent random variables such that 

X  = e 
1 prob. p 

k 0 prob. q = 1 — p 

¢ 2 2 ≤ 

Sn = X1 + c + X ? 

(a) If we interpret Xk to be the number of heads on the kth toss of a coin, what interpretation can be given to 

n 
 

(b) Show that the law of large numbers in this case reduces to 

and interpret this result. 

 

 
Other measures of central 

tendency 

 
lim P 
nS` 

Sn 

n — p Š P = 0 

Find (a) the mode, (b) the median of a random variable X having density function 

f (x) =   
e—xx  Š 0

 
e 

0 otherwise 

and (c) compare with the mean. 

 
Work Problem 3.100 if the density function is 

f (x) =   
4x(1 — x2) 0 Š x  Š 1 

e 
0 otherwise 

Find (a) the median, (b) the mode for a random variable X definedby 

X = 
2 prob. 1 3 

e 
> 

 

and (c) compare with the mean. 
—1 prob. 2> 3 

 

Find (a) the median, (b) the mode of the set of numbers 1, 3, 2, 1, 5, 6, 3, 3, and (c) compare with 

the mean. 

 
Percentiles 

Find the (a) 25th, (b) 75th percentile values for the random variable having density function 

f (x) =  
2(1 — x) 0  Š x  Š 1 

e 0 otherwise 

Find the (a) 10th, (b) 25th, (c) 75th, (d) 90th percentile values for the random variable having 

density function 

f (x) =  e
c(x — x3) 0  < x < 1 

0 otherwise 

where c is an appropriate constant. 

 

Other measures of dispersion 
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Find (a) the semi-interquartile range, (b) the mean deviation for the random variable of Problem 

3.96. 

 

Work Problem 3.98 for the random variable of Problem 3.97. 
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u 

 

 

Find the mean deviation of the random variable X in each of the following cases. 

(a) f (x) = e 
e—x x Š 0

 

0 

otherwis 

 

(b) f 

(x) 

=  1 , 

p(1  + x2) 
—` < x < ̀ . 

e 
 

Obtain the probability that the random variable X differs from its mean by more than the 

semi-interquartile range in the case of (a) Problem 3.96, (b) Problem 3.100(a). 

 

Skewness and kurtosis 

Find the coefficient of (a) skewness, (b) kurtosis for the distribution of Problem 3.100(a).  
f (x) =  

c Q1 — 
 u x 

• 

If R 

a 
u x u Š a 

0 u x u > a 

where c is an appropriate constant, is the density function of X, find the coefficient of (a) 

skewness, 

(b) kurtosis. 

 

Find the coefficient of (a) skewness, (b) kurtosis, for the distribution with density function 

f (x) =   
le— lx x  Š 0 

e 
0 x < 0 

 

> > 
Miscellaneous problems 

>2. Find (a) the mean, (b) the variance, (c) the moment generating function, (d) the characteristic function,  
Let X be a random variable that can take on the values 2, 1, and 3 with respective 

probabilities 1 3, 1 6, and 1 

(e) the third moment about the mean. 

 
Work Problem 3.105 if X has density function 

f (x) =   
c(1 — x) 0  < x < 1 

e 0 otherwise 

where c is an appropriate constant. 

 

Three dice, assumed fair, are tossed successively. Find (a) the mean, (b) the variance of the sum. 

 

Let X be a random variable having density function 

f (x) =   
cx   0  Š x Š 2 

e 0 otherwise 

where c is an appropriate constant. Find (a) the mean, (b) the variance, (c) the moment 

generating function, 

(d) the characteristic function, (e) the coefficient of skewness, (f ) the coefficient of kurtosis.  

 
Let X and Y have joint density function 

f (x, y) =   
cxy   0 < x < 1, 0 < y < 1 

e0 otherwise 

Find (a) E(X2 + Y2), (!b) E( X2 + Y2). 

> > 
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Work Problem 3.109 if X and Y are independent identically distributed random variables 

having density function f (u) = (2p)—1 2e—u2 2, —` < u < ̀ . 
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3.61.  (a) 4   (b) 2 3.62. (a) 7 2 (b) 15 4 (c) 

 

 

Let X be a random variable having density 

function 
e1 

 
—1 < x < 1 

 
 

f (x)  =  2 

0 otherwise 

and let Y = X2. Find (a) E(X), (b) E(Y), (c) E(XY). 

 

 
 

 ANSWERS TO SUPPLEMENTARY PROBLEMS  
 

33..4435. . (a()a1) 1(b)(7b) (2c) 6(c) 13.44. (a) 3 >4 3(b.)416>.4 10(.c5) 3 >5 3.47. 3 
 

 
3.48. (a) 1 

 
(b) 1 (c 

> 

) 1 4 
 

> > > > 
3.50. (a) 7 10 (b) 6 5 (c) 19 10 (d) 5 6 

 

 
3.52. (a) 2 

> > 

3 (b) 2 3 

 
> > 

> 

(c) 4 3 

 
> 

> 

(d) 4 9 

 

 

 
> > > 

3.54. (a) 7 12 (b) 7 6 

 
> > 

(c) 5 12 

 
> 

(d) 5 3 

 
> 

(e) 7 4 (f ) 2 3 

 

3.55. (a) 5 2 (b) –55 12 (c) 1 4 (d) 1 4 

3.56. (a) n (b) 2n 3.57. (a) 35 12 (b) 12 

> 

> ! > 

4 

!35> 

3.60.  (a) Var (X) = 5, sX  =  !5 (b) Var (X) = 3>80,  sX  =  215>20 
 

3.58. (a) 4 3 (b) 3 3.59. (a) 1 (b) 1 
 

> > ! 

3.63. (a) 1(et>2 + e—t>2) = cosh(t>2) (b) m = 01,5m>2r = 1, mr = 0, mr = 1 

3.65. (a) m1 = 0, m2 = 5, m3 = —5, m4 = 35 (b) m1 = 0, m2 = 3>80, m3 = —121>160, m4 = 
2307>89260 2 3 4 

3.66.  (a) 1  (1 — t), | t | < 1 (b) m = 1, mr2 = 2, m3r = 6, m4r = 24 
3.64. (a) (1 + 2te2t – e2t)>2t2 (b) m = 4>3, mr2 = 2, m3r = 16>5, m4r = 16>3 

3.67. m1 = 0, m2 = 1, m3 = 2, m4 = 33 

3.68. (a) (bk+1 – ak+1) ( + 1)(b — a) (b) [1 + (—1)k](b — a)k 2k + 1(k + 1) 

3.70.  pei>va + qeivb 3.71.  ( sin av) v 3.72. (e2iv — 2ive2iv — 1)> 

> 
k 

> 

> 

a 

2v2 



 

 

 
) 1 2 (b) 

0 

2 (
>
usel 

1 

es
>
s) 

2 

> 

 

Y 
0 1 2 

Var (X u Y) 
3.89. 

5 9 
(a) 

29 36 
e–2 ( 

7 12 
b) 0.5 

 

106     CHAPTER 3 Mathematical Expectation 
 

 
3.75.  (a) 11>144 (b) 11>144 (c) !11>12 (d) ! > >   > 

(d) !
11 12 (e)

(
–
e
1
) –

14
1
4
>

(
6
f
4
) 

(
–
f
1
) 

1
–
1
15>73 

>960 

3.76. (a) 1 (b) 1 (c) 1 (d) 1    

(e) 0 (f ) 0 

3.77. (a) 73>960 (b) 7>3  960 

960 

!(c)  > 

73  

3.78.  (a) 233>324 (b) 233>324 (c) 

!233>18 

73 

233 
(d) !18 > 

(e) –91>324 (f ) –91>233 

 

3.79.  (a) 4 (b) 4>!35 3.80.  —!15>4 
3.81. (a) (3x + 2)>(6x + 3) for 0 Š x Š 1 (b) (3y + 2)>(6y + 3) for 0 Š y Š 1 

3.82. (a) 1 2 for x Š 0 (b) 1 for y Š 0 

 

3.83. (a) (b) 

  
 

 
3.84. (a) 

 
6x2 + 6x + 1 

for 0 Š x Š 1 (b) 
18(2x + 1)2 

6y2 + 6y +1 

18(2y + 1)2 for 0 Š y Š 1 

 

9 (b) 1 

 

 

 
 

 

 

 

3.94.  (a) does not exist    (b) –1  (c) 0 3.95. (a) 3 (b) 3 (c) 3 
 

3.96. (a) 1  — 1 ! >2       

2 3 (b) 1 

1 

3.97.  (a) #   —  (3> !10) (b) #1 —  ( 23>2) (c) !1>2 (d) #1 —  (1>!10) 
3.98. (a) 1   (b) (! 3 — 1)> 

4 

 
3.101. (a) (5 — 2 ! 

> 

(c) 16>—81 1 ! > 

3) 3 

 
 

3) 3 
 

3.99.  (a) 1   (b) 0.17 (b(c) )(30.—025e1 3.100. (a) 1 —  2e–1 (b) does not exist 

3.102. (a) 2 (b) 9 3.103. (a) 0 (b) 24>5a 3.104. (a) 2 (b) 9 

Y 
0 1 2 

E(X u Y) 4 3 7 6 1 2 

 

X 
0 

1 
2 

>E(Y u X) 4 3 1 5 7 

 

3.85. (a) 1> 

 

3.86. (a) 

   
 

(b) 

 

3.87. (a 
     

   

 

3.92. (a) + 0 

8 15 

 

(b) ln 2 (c) 1 
   

3.93. 

 

(a) 1>!3 (b) 

 

1 — (1 2) (c) 
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3.105.  (a) 7>3 (b) 5>9 (c) (et  + 2e2t  + 3e3t)>6 (d) (eiv  +  2e2iv  +  3e3iv)>6 (e) —7>2 

3.106. (a) 1>3 (b) 1>18 (c) 2(et — 1 — t)>t2 (d) —2(eiv — 1 — iv)>v2 (e) 1> 

7 

135 

3.107. (a) 21 2 (b) 35 4 
(e) —2 !18>15 (f ) 12>5 

> > 
 

3.108. (a) 4>3 (b) 2>9 (c) (1 + 2te2t — e2t)>2t2 (d) —(1 + 2ive2iv — e2iv)>2v2
 

 

3.109.  (a) 1 (b) 8(2 !2 —  1)>15 

3.111. (a) 0 (b) 1>3 (c) 0 
 

3.110.  (a) 2    (b) !2p>2 



 

Unit – 3 & 4 Test 

of Hypothesis 
 

1. Define Sample. 

Solution: A Sample is a part of the statistical population (i.e) it is a subset which is collected to draw an 
inference about the population. 

2. Define Sample size. 

Solution:The number of individuals in a sample is called the sample size 

3. Define Null hypotheses and Alternative hypothesis. 

Solution: For applying the test of significance, we first set up of a hypothesis, a definite statement about 

the population parameter, such a hypothesis is usually called as null hypothesis and it is denoted by H0. 

Any hypothesis which is complementary to the null hypothesis is called an alternative 

hypothesis and it is denoted byH1. 

4. A random sample of 200 tins of coconut oil gave an average weight of 4.95 kgs with SD of 0.21 kg. 
Do we accept the hypothesis of net weight 5 kgs per tin at 1% level ? Explain. (L6) 

Solution: 

Sample size n=200 

Sample mean𝑥̅=4.95kg 
Sample SD s=0.21kg 
Population mean µ=5kg. 

The sample is a large sample and so apply z-test. H0 : µ=5kg 

H1 : µ≠5kg 

The test statistic is z= 
⁄
 

𝑥̅−µ 
 

 

 
 

 

 

∴ |𝑧|=3.37 

𝑠 √𝑛 
 
= = 

0.21⁄200 

−.05 × √200 
   

= −3.37 

0.21 

𝐴𝑡 1% 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝑡ℎ𝑒 𝑡𝑎𝑏𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑧 𝑖𝑠 2.58. 

 𝐂𝐨𝐧𝐜𝐥𝐮𝐬𝐢𝐨𝐧: H0 is rejected at 1% 𝑙𝑒𝑣𝑒𝑙 since calculated value of |𝑧| is greater than the table value of 
z.Therefore the net weight tin is not equal to 5 kg. 

5. A sample of 900 items has mean 3.4 and SD 2.61. Test weather the sample be regarded as drawn 
from a population with mean 3.25 at 5% level of significance? (L4) 

Solution: 

Sample size n=900 

4.95 − 5 



 

⁄ 

Sample mean𝑥̅=3.4 Sample 

SD s=2.61 Population mean 
µ=3.25 

The sample is a large sample and so apply z-test. H0 : µ=3.25 

H1 : µ≠3.25 
𝑥̅−µ 

The test statistic is z= 3.4 − 3.25 0.15 
𝑠 √𝑛 

 

= = = 1.72 

∴ |𝑧|=1.72 2.61⁄√900 2.61⁄30 

𝐴𝑡 1% 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝑡ℎ𝑒 𝑡𝑎𝑏𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑧 𝑖𝑠 2.58. 

 𝐂𝐨𝐧𝐜𝐥𝐮𝐬𝐢𝐨𝐧: H0 is accepted at 1% 𝑙𝑒𝑣𝑒𝑙 since calculated value of |𝑧| is less than the table value of 
z.Therefore H0 is accepted. 

6. A Sample of 400 male students is found to have a mean height of 171.38 cms. Can it be reasonable 
regarded as a sample from a large population with mean height 171.17 cms and standard deviation 

3.30 cms? Justify? (L6) 

Solution: 

Sample size n=400 

Sample mean𝑥̅=171.38cm Population 

SD𝜎=3.30cm Population mean 
µ=171.17cm 

The sample is a large sample and so apply z-test. H0 : 

µ=171.17cm 
H1 : µ≠171.17cm 

The test statistic is z= 
⁄
 

𝑥 ̅−µ 
 

 

 
0.21 × 20 

 

 

 
∴ |𝑧|=1.72 

𝑠 √𝑛 
 

= 

171.38 − 171.17 

= 

3.30⁄√400 

 
 

3.30 

= 1.27 

𝐴𝑡 5% 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝑡ℎ𝑒 𝑡𝑎𝑏𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑧 𝑖𝑠 1.96. 

 𝑪𝒐𝒏𝒄𝒍𝒖𝒔𝒊𝒐𝒏: H0 is accepted at 5% 𝑙𝑒𝑣𝑒𝑙 since calculated value of |𝑧| is less than the table value of z.Therefore 
H0 is accepted andµ=171.17cm. 

7. The mean of two samples of 1000 and 2000 numbers are respectively 67.5 and 68 inches. Can they 
be regarded as draws from the same population with SD 2.5 inches? Justify? (L6) 

Solution: 

𝑥 ̅1=67.5, 𝑥̅2=68 



 

𝑛1=1000, 𝑛2=2000 

Population SD𝜎=2.5 

The two given samples are large samples. H0 : µ1=µ2 

H1 :µ1 ≠ µ2 

The test statistic is z= 
𝑥̅1−𝑥̅2 

 
67.5−68 =−6.25 

𝜎⁄√  
1 

+ 
1 

2.5⁄√ 
1 

+ 
1   

 

∴ |𝑧|=6.25 𝑛1 𝑛 
2 

100 

0 

2000 

𝐴𝑡 1% 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝑡ℎ𝑒 𝑡𝑎𝑏𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑧 𝑖𝑠 2.58. 
 𝑪𝒐𝒏𝒄𝒍𝒖𝒔𝒊𝒐𝒏: H0 is rejected at 1% 𝑙𝑒𝑣𝑒𝑙 since calculated value of |𝑧| is greater than the table value of z. 

∴H0 is rejected at 1% 𝑙𝑒𝑣𝑒𝑙 of significance and so the two samples cannot be regarded as belonging to the 

same population. 

8. The random samples of sizes 400 and 500 have mean 10.9 and 11.5 respectively. Can the samples be 
regarded as drawn from the same population with variance 25? Justify? (L6) 
Solution: 

𝑥 ̅1=10.9, 𝑥̅2=11.5 

𝑛1=400, 𝑛2=500 

𝜎2=25 

The two given samples are large samples. H0 : µ1=µ2 

H1 :µ1 ≠ µ2 

The test statistic is z= 
𝑥̅1−𝑥̅2 

 
10.9−11.5 =−2.38 

𝜎⁄√  
1 

+ 
1 

5⁄√ 
1 

+ 
1  

 

∴ |𝑧|=2.38 𝑛1 𝑛 
2 

40 500 

0 

𝐴𝑡 1% 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝑡ℎ𝑒 𝑡𝑎𝑏𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑧 𝑖𝑠 2.58. 

 𝐂𝐨𝐧𝐜𝐥𝐮𝐬𝐢𝐨𝐧: H0 is accepted at 1% 𝑙𝑒𝑣𝑒𝑙 since calculated value of |𝑧| is less than the table value of z. 
Therefore the samples come from the population with variance 25. 

9. A sample of 26 bulbs given a mean life of 990 hours with a SD of 20 hours. The manufactures 
claims that the mean life of bulbs is 1000 hours. Is the sample not upto the standard? Justify? (L6) 
Solution: 
Sample size n=26< 30(𝑠𝑚𝑎𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒) 

Sample  mean𝑥̅=990   
Sample SD s=20 

= 

= 



 

2 ∑ 

2 ∑ 

𝑆 

Population mean µ=1000 Degrees of 

freedom=n-1=26-1=25 

Here we know 𝑥̅,µ,SD and n.Therefore, we use student’s ‘t’ test. H0 : The sample is 
upto the standard. 
H1 : The sample is not upto the standard. 

𝑥̅−µ 

The test statistic is t=
𝑠⁄√𝑛−1

 

 

∴ |𝑡|=2.5 (i.e) Calculated t=2.5 

 
990 − 1000 = −2.5 

=    

20⁄√25 

𝐴𝑡 5% 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝑡ℎ𝑒 𝑡𝑎𝑏𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑧 𝑎𝑡 25𝑑. 𝑓 𝑖𝑠 2.06 

 𝐂𝐨𝐧𝐜𝐥𝐮𝐬𝐢𝐨𝐧:H0is rejected as calculated value is greater than the tabulated value. ∴The sample is not  

upto the standard. 

10. In one sample of 8 observations the sum of the squares of deviations of the sample values from the 
sample mean was 84.4 and it the other sample of 10 observations it was 102.6. Test whether this 
difference is significant at 5% level? (L4) 
Solution: 

𝑛1=8, 𝑛2=10 

(𝑥−𝑥̅)2  84.4  
𝑆  = = 

1 𝑛1−1 =12.057 

7 

(𝑦−𝑦̅)2  102.6 
𝑆 = = =11.4 

 

2 𝑛2−1 9 

H0 :𝑆2 = 𝑆2
 

1 

𝑆2 

2 
12.057 

Now F=
 1 

=2 

2 

 

11.  

4 

= 1.057 

(i.e) calculated F=1.057 

Tabulated value of F for(7,9) degrees of freedom is 3.29. Calculated value 

F<Tabulated value F 

∴We accept the null hypothesis. 

11.A sample of size 13 gave an estimates population variance of 3.0, while another sample of size 15 

gave an estimate of 2.5. Could both samples be from populations with the same variance. Justify? 

(L6) 

Solution: 

𝑛1=13, 𝑛2=15 

𝑆2 = ∑ (𝑥 − 𝑥̅)2 
1 
𝑆2 = ∑    

2 
𝑛1 − 1 (𝑦 

− 𝑦̅)2 
 
 

𝑛2 − 1 



 

𝑆 

H0 :𝑆2 = 𝑆2.The two samples have come from populations with same variance. 
1 2 

∴The test statistic is 

𝑆2 

F= 
12 = 

2 

(𝐺𝑟𝑒𝑎𝑡𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) 

= 

(𝑆𝑚𝑎𝑙𝑙𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) 

3.0 
=1.2 

2.5 

(i.e) calculated F=1.2 

Tabulated value of F for(12,14) degrees of freedom is 2.53 Calculated 

value F<Tabulated value F 

∴We accept the null hypothesis H0 

(𝑖. 𝑒) Both samples have come from the populations with the same variance. 

12. Write the test procedure of Chi-square test? (L5) Solution: 

(i) Write down the null hypothesis 

(ii) Write down the alternative hypothesis. 

(iii) Calculate the theoretical frequencies for the contingency. 

(iv) Calculate ℵ2=∑ 
(𝑂−𝐸)2

 

𝐸 

(v) Write down the number of degress of freedom. 

(vi) Write the conclusion on the hypothesis by comparing the calculated values of 

ℵ2with table value of ℵ2 

13. Write the uses of ℵ2 – test? (L1) 
Solution: 

(i) It is used to test the goodness of a distribution. 

(ii) It is used to test the significance of the difference between the observed frequencies in a sample and 
the expected frequencies,obtained from the theoretical distribution. 

(iii) It is also used to test the independence of attributes. 

(iv) In case of small samples(where the population standard deviation is not known) ℵ2 statistic is used to 
test whether a specified value can be the population variance 𝜎2. 

14.A machine is designed to produce insulation washers for electrical devices of average thickness of 

0.025cm. A random sample of 10 washers was found to have a thickness of 0.024cm with a S.D of 

0.002 cm. Test the significance of the deviation value of t for 9 degrees of freedom at 5% 𝒍𝒆𝒗𝒆𝒍 is 

2.262. (L4) Solution: 

Sample size n=10< 30(𝑠𝑚𝑎𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒) Sample 

mean𝑥̅=0.024cm Sample SD 

s=0.002cm Population mean 

µ=0.025cm 



 

Degrees of freedom=n-1=10-1=9 

Here we know 𝑥̅,µ,SD and n.Therefore, we use student’s ‘t’ test. H0 : The difference 

between 𝑥̅ and µ is not significant 

𝑥 ̅−µ                                        

The test statistic is t=
𝑠⁄√𝑛−1 

= −1.5 

∴ |𝑡|=1.5 (i.e) Calculated t=1.5 

𝐴𝑡 5% 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝑡ℎ𝑒 𝑡𝑎𝑏𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑧 𝑎𝑡 9𝑑. 𝑓 𝑖𝑠 2.06 

 𝐂𝐨𝐧𝐜𝐥𝐮𝐬𝐢𝐨𝐧:H0 is accepted as calculated value is less than the tabulated value. 
 

PART-B 

1. Find student’s t, for the following variate value in a sample of eight -4, -2,- 2,0,2,2,3,3 taking 

the mean of the universe to be zero.(L1) 

Solution: 

 

∴n=8 

 

∴ µ=0 

Number of samples=8 

Mean of universe is zero 

𝑋̅=average value of X 

(−4)+(−2)+(−2)+0+2+2+3+3 

= 

8 

=0.25 

To calculate S,we have the formula 

S =√
∑(𝑋−𝑋̅)2 

𝑛−1 

Hypothesis: There is no significant difference between sample mean and population mean 
 

 

 
𝑋 𝑋 − 𝑋 ̅ (𝑋 − 𝑋̅)2 

−4 −4.25 18.06 

−2 −2.25 5.06 

−2 −2.25 5.06 

0 −0.25 0.06 

2 1.75 3.06 

2 1.75 3.06 

3 2.75 7.56 

3 2.75 7.56 



 

⁄ 

∑(𝑋 − 𝑋̅)2  = 49.98 
 

∑(𝑋−𝑋̅)2 49,48 
S =√ = √ =√5.497 =2.658 

𝑋̅−µ 
t= = 

𝑛−1 
0.25−0 

8−1 

𝑆⁄
√𝑛

−1 ⁄ 
 =0.248 

2.658 √7 

Table value=2.26 

∴calculated value <tabulated value 

∴ Hypothesis is accepted and so there is no significant difference between sample mean and population mean. 

2. Ten students are selected at random in a university and their heights are measured in inches as 

64,65,65,67,67,69,69,70,72 and 72.Using these data, Discuss the suggestion that the mean height of 

the students in the universityis 66.(At 5% level of significance the value of t for 9 d.f is 2.262).(L2) 

 

Solution: 

𝑋̅−µ 
t= 
𝑆 √𝑛 

 

 
 

S =√
∑(𝑋−𝑋̅)2 

𝑛−1 

𝑋̅=average value of X 
64+65+65+67+67+69+69+70+72+72 

=68 

= 

10 

Hypothesis: There is no significant difference between sample height and 

population height. 

 

𝑋 𝑋 − 𝑋 ̅ (𝑋 − 𝑋̅)2 

64 −4 16 

65 −3 9 

65 −3 9 

67 −1 1 

67 −1 1 

69 1 1 

69 1 1 

70 2 4 

72 4 16 

72 4 16 

∑(𝑋 − 𝑋̅)2  = 74 



 

S=√      =2.867 

74 74 
=√ 

10−1 9 

Here 𝑋̅=68, µ = 66, n = 10 
   68−66 =2.205 

𝑡 = 

2.867⁄√10 

Table value=2.26 

∴calculated value <tabulated value,therefore Hypothesis is accepted and the height of population group 
can be taken as 66. 

3. A fertilizer mixing machine is set to give 12kg of nitrate for every quintal bag of fertilizer.Ten 

100kg bags are examined.The percentages of nitrate are as follows 11,14,13,12,13,12,13,14,11,12.Is 

there reason to belive that the machines is defective? (value of t for 9 d.f is 2.262). Justify? (L6) 

Solution: 

Hypothesis: There is no significant difference between sample percentage and population percentage. 

Here n=10 

̅𝑋=average value of X µ = 12 
11+14+13+12+13+12+13+14+11+12 

= 

10 

=12.5 

 

𝑋 𝑋 − 𝑋 ̅ (𝑋 − 𝑋̅)2 

11 −1.5 2.25 

14 1.5 2.25 

13 0.5 0.25 

12 −0.5 0.25 

13 0.5 0.25 

12 −0.5 0.25 

13 0.5 0.25 

14 1.5 2.25 

11 −1.5 2.25 

12 −0.5 0.25 

 
To calculate S,we have the formula 

S =√
∑(𝑋−𝑋̅)2

=√ 
10.5  

∑(𝑋 − 𝑋̅)2  = 10.5 

 

S=1.08 
𝑛−1 10−1 



 

2 

1 

2 

𝑋̅−µ 
t= = 

𝑆⁄
√

𝑛
 

t=1.389 

Table value=2.26 

12.5−12 
× 3

 

1.08 

∴calculated value <tabulated value 

∴ Hypothesis is accepted and the machine cannot be believed to be defective. 

4. Two random samples drawn from two normal populations aregiven below.Test whether the two 

populations have the same variances (L4) 

Samples I 20 16 26 27 23 22 18 24 25 19   

Samples II 17 23 32 25 22 24 28 6 31 20 33 27 

Solution: 

Hypothesis: There is no significant difference between variances of the two samples. 

By Formula 

𝑆2 
 

F= 
1 

if 𝑆2 > 𝑆2 

𝑆2 1 2 

𝑆2 

=
 2 

if 𝑆2 > 𝑆2 

𝑆2 2 1 

 

 

 
𝑤ℎ𝑒𝑟𝑒 𝑆2 =∑ 

 

(𝑋1  − ̅𝑋̅1̅)
2 

 

 

 
Here 𝑛1 = 10, 𝑛2=12 

1    

𝑛1 − 1 

𝑆2 = ∑ (𝑋2  − ̅̅𝑋2̅)
2 

 

𝑛2 − 1 

Calculating the averages of two samples we get, 

̅𝑋̅1̅ =  22, 𝑋2̅ = 24 

 

𝑋1 𝑋1 − 𝑋̅  ̅1̅ (𝑋1  − ̅𝑋̅1̅)
2 𝑋2 𝑋2 − 𝑋̅̅2̅ (𝑋2  − ̅̅𝑋2̅)

2 

20 −2 4 17 −7 49 

16 −6 36 23 −1 1 

26 4 16 32 8 64 

27 5 25 25 1 1 

23 1 1 22 −2 4 

22 0 0 24 0 0 

18 −4 16 28 4 16 

24 2 4 6 −18 324 

25 3 9 31 7 49 

19 −3 9 33 9 81 

   20 −4 16 



 

𝑆 

   27 3 9 

∑(𝑋1  − ̅𝑋̅1̅)
2  = 120 ∑(𝑋2  − ̅𝑋̅2̅)

2  =614 

𝑆2 = ∑ 

1 

 
(𝑋1  − ̅𝑋̅1̅)

2 

 
𝑛1 − 1 

 

120 

= 

 

9 

 

= 13.33 

𝑆2 = ∑ (𝑋2 − ̅̅𝑋2̅)
2 614 = 55.81 ⇒ 𝑆2 > 𝑆2 

= 
 

 
 

𝑆2 

∴F= 
22= 

1 

2 

55.8 

1 

 

13.3 

3 

 

 
 

=4.18 

𝑛2 − 1 11 2 2 

Degrees of freedom 𝛾1   = 12 − 1 = 11, 𝛾2 = 10 −1 = 9 

Table value=3.10 

Calculated value > Table value 

∴ Hypothesis is rejected. 

∴ There is significant difference between the variance. 

5.  In  two groups of ten children each increases in weight  due to two different 

diets in the same period were in pounds. 

8 5 7 8 3 2 7 6 5 7 

3 7 5 6 5 4 4 5 3 6 

Find whether the variance are significantly different . (L1) Solution : 

Ho : there is no significant Diffenence between the variance of the two samples 

𝑆 21 

F = 

If 𝑆2 > 𝑆2= 𝑆 
2 

𝑖𝑓 𝑆2 > 𝑆2 

𝑆2
2 

1 2 
22 2 1 
1 

 

Where 𝑆2 ∑(𝑋1−̅𝑋̅̅1̅)

2 

 

Here 𝑛 =10 𝑛 
= 10 

 
 

1 𝑛1−1 1 2 

2     
∑(𝑋2−̅𝑋̅̅2̅)2  

⃐ ⃐ 
𝑆  = 𝑋 =5.8𝑋 =4.8 

𝑋1 𝑋1- 𝑋⃐12 
   (𝑋 − ⃐𝑋 ) 

𝑛2−1 1 1 1 1 
𝑋2 𝑋2- ⃐𝑋2 (𝑋  − 𝑋                                                             

) 2 2 

𝑆 

= 



 

3 
5 
7 
8 
3 
2 
7 
6 
5 
7 

2.2 
-0.8 
1.2 
2.2 
-2.8 
-3.8 
1.2 
0.2 
-0.8 
1.2 

4.84 
0.64 
1.44 
4.84 
7.84 

14.44 
1.44 
0.04 
1.64 
1.44 

3 
7 
5 
6 
5 
4 
4 
5 
3 
6 

-1.8 
2.2 
0.2 
1.2 
0.2 
-0.8 
-0.8 
0.2 
-1.8 
1.2 

3.24 
4.84 
0.04 
1.44 
0.04 
0.64 
0.64 
0.04 
3.24 
1.44 



 

2 

2 

F = 2 

= 

2 

  2 

∑(𝑋1 − ⃐𝑋1 ) =37.6 

  2 

∑(𝑋2 − ⃐𝑋2) =15.6 

∑(𝑋1−̅𝑋̅̅1̅)
2 

𝑆 = 

37.6 

= 

 
 

 
 

1 𝑛1−1 =4.18 

9 

∑(𝑋2−̅𝑋̅̅2̅)2 15.6  
𝑆 = = 

2 𝑛2−1 =1.73 

9 
𝐻𝑒𝑟𝑒 𝑆2 > 𝑆2 

𝑆 2 
1 

 

𝑆2 

4.1 

8 

= 

1.7 

3 

 

=2.42 

1 2 

 
 

𝐻𝑒𝑟𝑒 

𝑣1=10-1=9 𝑣2=10-1=9 

Degrees of freedom =9.9 

Table value for the Degrees of freedom 9.9 at 5% level =3.23 Calculated value 

=2.42 < 𝑇𝑎𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 

∴ 𝐻0 =Accepted 

There is no significant deffeerence between the variance . 

6. The nicotine contents in milligrams in two samples of tobacco werefound to be as follows. 

Samples A 24 27 26 21 25  

Samples B 27 30 28 31 22 36 

Can it be said that the two samples have same variance.Justify?(L6) Solution : 

𝐻0 = There is no significant deffeerence between the variance of the two samples 

𝑋 𝑋- 𝑋̅ (𝑋 − ̅X)2 𝑌 𝑌- 𝑌̅ (𝑌 − Y̅)2 

24 0.6 0.36 27 -2 4 

27 2.4 5.76 30 1 1 

26 1.4 1.96 28 -1 1 

21 3.6 12.96 31 2 4 

25 0.4 0.16 22 -7 49 

   36 7 49 

123  21.2 174  108 

𝑋̅=
∑ 𝑋  123 

=24.6 

𝑛 5 

̅𝑌=
∑ 𝑌

=
174 

=29 

𝑛 6 

∑(𝑋−𝑋̅)
2 

𝑆 = 

21.2 

= 

 
 

 
 

1 𝑛1−1 =5.3 

4 



 

𝑆
2  

=
∑(𝑌−𝑌̅)2   

= 
108

=21.6
 

 



 

2 𝑛2−1 5 



 

𝑆 

2 2 

𝑆 2 21.6 =4.07 
2  

F= 2 
1       

5.3 

Calculated value =4.07 

Table value of F for (5,4 ) d,f at 5% level is 6.26 

∴ calculated value calculated value < Table value. 

∴  We accept 𝐻0 𝑖e ; The variance are equal . 

7. Two random samples were drawn from two normal populations andtheir values are 

A 66 67 75 76 82 84 88 90 92   

B 64 66 74 78 82 85 87 92 93 95 97 

 

Test whether the two populations have the same variance at 5% level of Significance. 

(L4) 

Solution : 

There is no significant difference between the variance of the sample . 

𝑋 𝑋- 𝑋̅ (𝑋 − X̅   )2 𝑌 𝑌- 𝑌̅ (𝑌 − Y̅   )2 

66 

67 

75 

76 

82 

84 

88 

90 

92 

-14 

-13 

-5 

-4 

2 

4 

8 

10 

12 

196 

169 

25 

16 

4 

16 

64 

100 

144 

64 

66 

74 

78 

82 

85 

87 

92 

93 

95 

97 

-19 

-17 

-9 

-5 

-1 

2 

4 

9 

10 

12 

14 

361 

289 

81 

25 

1 

4 

16 

81 

100 

144 

196 

720 0 734 913 0 1298 

∑(𝑋−𝑋̅)2 734 ∑(𝑌−𝑌̅)2 1298 
    

𝑆 = = =91. 𝑆 = = 
1 𝑛1−1 8 2 𝑛2−1 

𝑆2 > 𝑆2 

=129.8 

10 

2 

𝑆2 

1 

129.8 

F=
 2 
𝑆=2 

1 
91.75 

=1.41 

Degree of freedom is (10,8) 

Table value of F =3.34 AT 5% LEVEL 

∴ calculated value < Table value. 

∴ WE Accepted 𝐻0. 

There is no significant difference between the variance of the two population . 

= 



 

8. Do the following data give evidence of the effectiveness of 

inoculation?Justify?(L6) 

 Attacked Not attacked 

Inoculated 20 300 

Not inoculated 80 600 

Solution : 

𝐻0 : There is no effect inoculation . 

Table of observed frequencies is formed from the given data . 

 

   TOTAL 

 20 

80 

300 

600 

320 

680 

TOTAL 100 900 1000 

Table of expected frequencies 

 Total 

 100×320 900×320 320 

=32 =288  

1000 1000  

100×6800  900×680 680 
 =68 =612  

1000  1000  

Total 100 900 1000 

𝑐ℎ𝑖 𝑠𝑞𝑢𝑎𝑟𝑒 𝑇𝑎𝑏𝑙𝑒. 

O E O-E (𝑂 − 𝐸)2 (𝑂 − 

𝐸)2 

 
 

𝐸 
20 32 -12 144 4.5  

300 288 12 144 0.50  

80 68 12 144 2.12  

600 612 -12 144 0.24  

    (𝑂 − 𝐸)2 

∑ 
𝐸 

= 7.36 

 

Degrees of freedom =(𝑟 − 1)(𝑐 − 1) =(2 − 1)(2 − 1) =1 Table value of ℵ2 
for 1 d.f at 5% Level Is 3.841 
c.v= 7.36 T.V =3.841 C.V>T.V 

∴ Hypothesis is rejected ..There is effect ofinoculation. 

9. The following data are collected on two characters 

 Smokers Non smokers 

Literates 83 57 



 

Illiterates 45 68 

Based on this ,can you say there is no relation between smoking and literacy. Justify? (L6) 

Solution : 

𝐻0 : There is no relation between smoking and literacy . Table of 

observed frequencies 

 

   Total 

 83 

45 

57 

68 

140 

113 

Total 128 125 253 

Table of expected frequencies 

 Total 

 128×140 125×140 140 

=70.83 =69.17  

253 253  

100×6800 900×680 113 

=57.17 =55.83  

1000 1000  

Total 128 125 253 

𝑐ℎ𝑖 𝑠𝑞𝑢𝑎𝑟𝑒 𝑇𝑎𝑏𝑙𝑒. 

O E O-E (𝑂 − 𝐸)2 (𝑂 − 

𝐸)2 

 
 

𝐸 
83 70.83 12.17 148.11 2.09  

57 69.17 -12.17 148.11 2.14  

45 57.17 -12.17 148.11 2.59  

68 55.83 12.17 148.11 2.65  

    (𝑂 − 

𝐸)2 

∑     
𝐸 

= 9. .47 

Degrees of freedom =(𝑟 − 1)(𝑐 − 1) =(2 − 1)(2 − 1) =1 Table value of ℵ2 
for 1 d.f at 5% Level Is 3.841 

c.v= 7.36 T.V =3.841 C.V>T.V 

∴ Hypothesis is rejected ..There is a relation between smoking and literacy. 

10. The following table gives the number of good and bad parts producedby each of three 

shifts in a factory. 

Shifts Good Bad 

Day 900 130 



 

Evening 700 170 

Night 400 200 

Test if there is any association between shifts and quality. (L4) Solution : 

𝐻0 : There is no sognificant association between shifts and literacy quality. Table of observed 

frequencies 

   Total 

 900 

700 

400 

130 

170 

200 

1030 

870 

600 

Total 2000 500 2500 

Table of expected frequencies. 

 Total 

 2000×1030 500×1030 1030 

=824 =206  

2500 2500  

    2000×870 500×870 870 

=696 =174  

2500 2500  

2000×600 500×600 600 

=480 =120  

2500 2500  

Total 2000 500 2500 

𝑐ℎ𝑖 𝑠𝑞𝑢𝑎𝑟𝑒 𝑇𝑎𝑏𝑙𝑒. 

O E O-E (𝑂 − 𝐸)2 (𝑂 − 𝐸)2 

 
 

𝐸 

900 824 76 5776 7.01  

130 206 -76 5776 28.04  

700 696 4 16 0.02  

170 174 -4 16 0.09  

400 480 -80 6400 13.33  

200 120 -80 6400 53.33  

    (𝑂 − 

𝐸)2 

∑     
𝐸 

= 9. .47 

Degrees of freedom =(𝑟 − 1)(𝑐 − 1) =(3 − 1)(2 − 1) =2 Table value of ℵ2 
for 2 d.f at 5% Level Is 5.99 

c.v= 101.83 T.V =5.99 C.V>T.V 

∴ Hypothesis is rejected ..There is a association between shifts and quality. 

11. The number of students in each category is given following table. 

  Ability in Mathematics 



 

Such in Medical school  Low Average High 

Low 14 8 5 

Average 12 51 11 

High 7 24 18 

On the basis of contingency table,should we conclude that success in medical school is related 

to ability in Mathematics? Test at 0.05 level of 

significant. (L4) 

Solution : 

𝐻0 : There is no sognificant relation between success and abilityTable of observed 

frequencies 

 

    Total 

 14 

12 

7 

8 

51 

24 

5 

11 

18 

27 

74 

49 

Total 33 83 34 150 

Table ofexpected frequencies. 

 Total 

 33×27 83×27 =14.9 34×27 =6.12 27 

=5.94      

150 
 

150  
 

150   

  33×74 83×74 =40.9 34×74 =16.7 74 

=16.2      

150 
 

150  
 

150   

33×49 83×49 =27.1 34×49 =11.1 49 

    =10.7        

150 150  
 

150   

Total 33 83 34 150 

𝑐ℎ𝑖 𝑠𝑞𝑢𝑎𝑟𝑒 𝑇𝑎𝑏𝑙𝑒. 

O E O-E (𝑂 − 𝐸)2 (𝑂 − 𝐸)2 

 
 

𝐸 

14 

8 

5 

12 

51 

11 

7 

24 

18 

5.94 

14.9 

6.12 

16.2 

40.9 

16.7 

10.7 

27.1 

11.1 

8.06 

-6.90 

-1.12 

-4.20 

10.10 

-5.7 

-3.7 

-3.10 

6.90 

64.96 

47.61 

1.25 

17.64 

102.01 

32.49 

13.69 

9.61 

47.61. 

10.94 

3.20 

0.20 

1.09 

2.49 

1.95 

1.28 

0.35 

4.29 



 

    (𝑂 − 𝐸)2 

∑  = 9..47 
𝐸 

 

Degrees of freedom =(𝑟 − 1)(𝑐 − 1) =(3 − 1)(3 − 1) =4 Table value of ℵ2 

for 4 d.f at 5% Level is 9.488 
c.v= 25.79 T.V =9.488 C.V>T.V 

∴ Hypothesis is rejected. There is a relation between success and ability. 

12.A sample analysis of examination results of 500 students was made.It was found that 220 students 

had failed,170 had secured a third class,90 were placed in second class and 20 got a first class.Do 

these figures commensurate with the general examination result which is in the ratio of 4:3:2:1 for 

the various categories respectively.Explain? (L6) 

Solution: 
Null hypothesis H0: The observed results commensurate with the general examination results. 

Expected frequencies are in the ratio of 4: 3: 2: 1 Total 

frequency=500 
If we divide the total frequency 500 in the ratio 4: 3: 2: 1 we get the expected frequencies as 200,150,100,50 

𝑐ℎ𝑖 𝑠𝑞𝑢𝑎𝑟𝑒 𝑇𝑎𝑏𝑙𝑒. 

class Observed frequency 

(O) 

Expected frequencies 

(E) 

O−E (𝑂 − 

𝐸)2 

 
 

𝐸 
Failed 220 200 20 2.00 

Third 170 150 20 2.667 

Second 90 100 −10 1.000 

first 20 50 −30 18.000 

Total 500 500  23.667 

 

(𝑂−𝐸)2 
Calculated ℵ2 = ∑ 

𝐸 
Degrees of freedom = 4-1 

(i.e) 𝛾 = 3 

= 23.667 

∴table value of ℵ2 at 5% level for 3 d.f=7.81 

∴calculated value>table value 

∴We reject the null hypothesis (i.e) The observed results are not commensurate with the general 
examination results. 



 

13. On the basis of information given below about the treatment of 200 patients suffering from a 
disease,state whether the new treatment is comparatively superior to the conventional treatment. 
(L1) 

 Favourable Not favourable Total 

New 60 30 90 

Conventional 40 70 110 

 

Solution: 

Null hypothesis H0:No difference between new and conventional treatment (or) New and conventional 
treatment are independent. 

The no. of d.f is (2−1)(2−1)=1 

Expected Frequency table: 

 Total 

 90×100 90×100 90 

    =45     =45  

100 200  

100×110  100×110  110 
 

 

=55 
 

 

=55  

100  200   

Total 100 100 200 

 

𝑐ℎ𝑖 𝑠𝑞𝑢𝑎𝑟𝑒 𝑇𝑎𝑏𝑙𝑒. 

Observed frequency 

(O) 

Expected frequencies 

(E) 

(𝑂 − 

𝐸)2 

(𝑂 − 

𝐸)2 

 
 

𝐸 
60 45 225 2.00 

30 45 225 2.667 

40 55 225 1.000 

70 55 225 18.000 

   18.18 

 

(𝑂−𝐸)2 
Calculated ℵ2 = ∑ 

𝐸 

= 18.18 

∴Table value of ℵ2 at 5% level for 1 d.f=3.841 

∴calculated value>table value and so we reject the null hypothesis. 

(𝑖. 𝑒)New and conventional treatment are not independent. 

14. Give the table for hair colour and eye colour.Find the value of 𝝍𝟐.Is there good association 
between the two. (L1) 

 Hair colour 

Eye colour  Fair Brown Black Total 

Blue 15 5 20 40 



 

 Grey 20 10 20 50 

Brown 25 15 20 60 

Total 60 30 60 150 

Solution: 

Null hypothesis H0:The two attributes Hair colour and Eye colour are independent. Expected Frequency table: 
 

 
 

 

 

 

 

𝑐ℎ𝑖 𝑠𝑞 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

(𝑂−𝐸)2 
Calculated ℵ2 = ∑ 

𝐸 

= 3.6458 

∴Table value of ℵ2 at 5% level for 4 d.f=9.488 

∴calculated value<table value and so we accept the null hypothesis. 

(𝑖. 𝑒) The two attributes Hair colour and Eye colour are independent. 

 Total  

 

 

𝑢𝑎𝑟𝑒 𝑇𝑎 

60×40 
=16 

150 

30×4
0 

=8 
150 

60×4
0 

=16 
150 

40 

𝑏6𝑙𝑒0.×50  

=20
 

30×50 
=10 

60×50 
=20 50 

 Obse rv
1e5d0frequenc y 150 Expect ed 

1fr5e0quencies 
 (

𝑂 
− 𝐸)2 (𝑂 − 

𝐸)2 

 
𝐸 

60×
(O
6

)
0 
=24 

150 

30× 

150 

60 

=12 
6(0E×) 60  

=24
 

150 
60  

 Total 15 60  30 16 60 15 0 1 0.0625 

 5 8 9 1.125 

 20 16 16 1 

 20 20 0 0 

 10 10 0 0 

 20 20 0 0 

 25 24 1 0.042 

 15 12 9 0.75 

 20 24 16 0.666 
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Before studying this chapter you should know or, if necessary, review 

1. Quality as a competitive priority, Chapter 2, page 00. 

2. Total quality management (TQM) concepts, Chapter 5, pages 00 – 00. 

 
 

LEARNING OBJECTI VES 

After studying this chapter you should be able to 

Describe categories of statistical quality control (SQC). 

Explain the use of descriptive statistics in measuring quality characteristics. 

3 Identify and describecauses of variation. 

4 Describe the use of controlcharts. 

Identify the differences between x-bar, R-, p-, and c-charts. 

 6 Explain the meaning of process capability and the process capability index. 

7 Explain the term Six Sigma. 

8 Explain the process of acceptance sampling and describe the use of operating characteristic (OC) curves. 

9 Describe the challenges inherent in measuring quality in service organizations. 
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W e have all had the experience of purchasing a 

prod- uct only to discover that it is defective in 

some way 

or does not function the way it was designed to. This 

could be a new backpack with a broken zipper or an 

“out of the box” malfunctioning computer printer. 

Many of us have struggled to assemble a product the 

manufacturer has indicated would need only “minor” 

assembly, only to find that a piece of the product is 

missing or defective. As consumers, we expect the 

products we purchase to func- tion as intended. 

However, producers of products know that it is not 

always possible to inspect every product and 

every aspect of the production process at all times. The challenge is to design 

ways to maximize the ability to monitor the quality of products being produced 

and eliminate defects. 
One way to ensure a quality product is to build quality into the process. 

Consider Steinway & Sons, the premier maker of pianos used in concert halls all 

over the world. Steinway has been making pianos since the 1880s. Since that time 

the company’s manufacturing process has not changed significantly. It takes the 

company nine months to a year to produce a piano by fashioning some 12,000- 

hand crafted parts, carefully measuring and monitoring every part of the process. 

While many of Stein- way’s competitors have moved to mass production, where 

pianos can be assembled in 20 days, Steinway has maintained a strategy of quality 

defined by skill and craftsman- ship. Steinway’s production process is focused on 

meticulous process precision and extremely high product consistency. This has 

contributed to making its name synony- mous with top quality. 
 

 

 
Marketing, Management, 

Engineering 

€ Statistica1 quality 

control (SQC) 

The general category of 

statistical tools used to 

evaluate organizational 

quality. 

€ Descriptive 

statistics Statistics 

used to describe 

quality characteristics 

and relationships. 

source, and quality made everyone’s responsibility. However, talking about 
solving quality problems is not enough. We need specific tools that can help us 

make the right quality decisions. These tools come from the area of statistics and 

are used to help identify quality problems in the production process as well as in 

the product itself. Statistical quality control is the subject of this chapter. 

Statistica1 quality control (SQC) is the term used to describe the set of 

statistical tools used by quality professionals. Statistical quality control can be 

divided into three broad categories: 

1. Descriptive statistics are used to describe quality characteristics and 

relation- ships. Included are statistics such as the mean, standard deviation, 

the range, and a measure of the distribution of data. 

WHAT IS STATISTICAL QUALITY CONTROL? 

In Chapter 5 we learned that total quality management (TQM) addresses 

organiza- tional quality from managerial and philosophical viewpoints. TQM 

focuses on customer-driven quality standards, managerial leadership, continuous 

improvement, quality built into product and process design, quality identified 

problems at the 
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2. Statistical process control (SPC) involves inspecting a random sample of 

the output from a process and deciding whether the process is producing 

products with characteristics that fall within a predetermined range. SPC 

answers the question of whether the process is functioning properly or not. 

3. Acceptance sampling is the process of randomly inspecting a sample of 

goods and deciding whether to accept the entire lot based on the results. 

Acceptance sampling determines whether a batch of goods should be 

accepted or rejected. 

The tools in each of these categories provide different types of information for 

use in analyzing quality. Descriptive statistics are used to describe certain quality 

characteris- tics, such as the central tendency and variability of observed data. 

Although descriptions of certain characteristics are helpful, they are not enough to 

help us evaluate whether there is a problem with quality. Acceptance sampling can 

help us do this. Acceptance sampling helps us decide whether desirable quality has 

been achieved for a batch of products, and whether to accept or reject the items 

produced. Although this informa- tion is helpful in making the quality acceptance 

decision after the product has been pro- duced, it does not help us identify and 

catch a quality problem during the production process. For this we need tools in the 

statistical process control (SPC) category. 

All three of these statistical quality control categories are helpful in measuring 

and evaluating the quality of products or services. However, statistical process 

control (SPC) tools are used most frequently because they identify quality 

problems during the production process. For this reason, we will devote most of 

the chapter to this category of tools. The quality control tools we will be learning 

about do not only measure the value of a quality characteristic. They also help us 

identify a change or variation in some quality characteristic of the product or 

process. We will first see what types of variation we can observe when measuring 

quality. Then we will be able to identify specific tools used for measuring this 

variation. 

 

Variation in the production 

process leads to quality defects 

and lack of product consistency. 

The Intel Cor- poration, the 

world’s largest and most 

profitable manufacturer of 

microprocessors, understands this. 

Therefore, Intel has implemented 

a program it calls “copy-exactly” 

at all its manufacturing facilities. 

The idea is that regardless of 

whether the chips are made in 

Arizona, New Mexico, Ireland, or 

any of its other plants, they are 

made in exactly the 

same way. This means using the same equipment, the same exact materials, and 

workers 

performing the same tasks in the exact same order. The level of detail to which the 

“copy-exactly” concept goes is meticulous. For example, when a chipmaking 

machine was found to be a few feet longer at one facility than another, Intel made 

them match. When 

water quality was found 

to be different at one 

facility, Intel instituted a 

purifica- tion system to 

eliminate any 

differences. Even when 

a worker was found 

polishing equipment in 

one direction, he was 

asked to do it in the 

approved circular 

pattern. Why such 

attention to exactness of 

detail? The reason is to 

minimize all variation. 

Now let’s look at the 

different types of 

variation that exist. 

LINKS TO PRACTICE 

Intel Corporation 
www.intel.com 

http://www.intel.com/


 

€ Statistical process control (SPC) 

A statistical tool that involves inspecting a random sample of the output from a 

process and deciding whether the process is producing products with 

characteristics that fall within a predetermined range. 

€ Acceptance sampling The process of randomly inspecting a sampleof goods 

and deciding whether to accept the entire lot based on the results. 
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€ Common 

causes of 

variation 

Random causes that 

cannot be identified. 

 

 

 

 

 

 

 

 
€ Assignable 

causes of 

variation 

Causes that can be 

identified and 

eliminated. 

If you look at bottles of a soft drink in a grocery store, you will notice that no two 

bottles are filled to exactly the same level. Some are filled slightly higher and 

some slightly lower. Similarly, if you look at blueberry muffins in a bakery, you 

will notice that some are slightly larger than others and some have more 

blueberries than others. These types of differences are completely normal. No two 

products are exactly alike because of slight differences in materials, workers, 

machines, tools, and other factors. These are called common, or random, causes 

of variation. Common causes of varia- tion are based on random causes that we 

cannot identify. These types of variation are unavoidable and are due to slight 

differences in processing. 

An important task in quality control is to find out the range of natural random 

variation in a process. For example, if the average bottle of a soft drink called 

Cocoa Fizz contains 16 ounces of liquid, we may determine that the amount of 

natural vari- ation is between 15.8 and 16.2 ounces. If this were the case, we 

would monitor the production process to make sure that the amount stays within 

this range. If produc- tion goes out of this range— bottles are found to contain on 

average 15.6 ounces — this would lead us to believe that there is a problem with 

the process because the vari- ation is greater than the natural random variation. 

The second type of variation that can be observed involves variations where 

the causes can be precisely identified and eliminated. These are called assignable 

causes of variation. Examples of this type of variation are poor quality in raw 

materials, an employee who needs more training, or a machine in need of repair. 

In each of these examples the problem can be identified and corrected. Also, if 

the problem is allowed to persist, it will continue to create a problem in the 

quality of the product. In the ex- ample of the soft drink bottling operation, 

bottles filled with 15.6 ounces of liquid would signal a problem. The machine 

may need to be readjusted. This would be an assignable cause of variation. We 

can assign the variation to a particular cause (ma- chine needs to be readjusted) 

and we can correct the problem (readjust the machine). 
 

DESCRIPTIVE STATISTICS 
Descriptive statistics can be helpful in describing certain characteristics of a 

product and a process. The most important descriptive statistics are measures of 

central ten- dency such as the mean, measures of variability such as the standard 

deviation and range, and measures of the distribution of data. We first review 

these descriptive sta- tistics and then see how we can measure their changes. 

The Mean 

In the soft drink bottling example, we stated  that  the  average  bottle  is filled 

with 16 ounces of liquid. The arithmetic average, or the mean, is a statistic that 

measures the central tendency of a set of data. Knowing the central point of a set of 

data is highly important. Just think how important that number is when you receive 

test scores! 

To compute the mean we simply sum all the observations and divide by the 

€ Mean (average) 

A statistic that 

measures the central 

tendency of a set of 

data. 

total number of observations. The equation for computing the mean is 

 
n 

\ xi 

SOURCES OF VARIATION: COMMON AND ASSIGNABLE CAUSES 
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x = i=1  

n 
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where x = the mean 

xi = observation i, i = 1, . . . , n 

n = number of observations 
 

The Range and Standard Deviation 

In the bottling example we also stated that the amount of natural variation in the 

bottling process is between 15.8 and 16.2 ounces. This information provides us 

with the amount of variability of the data. It tells us how spread out the data is 

around the mean. There are two measures that can be used to determine the 

amount of variation in the data. The first measure is the range, which is the 

difference between the largest and smallest observations. In our example, the 

range for natural variation is 0.4 ounces. 

Another measure of variation is the standard deviation. The equation for 

comput- ing the standard deviation is 

\n(xi — x)2 

= i=1  

n — 1 

 

 

 

 

 

 

€ Range 

The difference between 

the largest and smallest 

observations in a set of 

data. 

 

€ Standard deviation 

A statistic that measures 

the amount of data 

dispersion around the 

mean. 

where o = standard deviation of a sample 

x = the mean 
xi = observation i, i = 1, . . . , n 

n = the number of observations in the sample 

Small values of the range and standard deviation mean that the observations are 

closely clustered around the mean. Large values of the range and standard 

deviation mean that the observations are spread out around the mean. Figure 6-1 

illustrates the differences between a small and a large standard deviation for our 

bottling operation. You can see that the figure shows two distributions, both with 

a mean of 16 ounces. However, in the first distribution the standard deviation is 

large and the data are spread out far around the mean. In the second distribution 

the standard deviation is small and the data are clustered close to the mean. 
 

 
 

Normal distributions with 

varying standard deviations 

Differences between symmetric 

and skewed distributions 

FIGURE 6-1 FIGURE 6-2 
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Skewed distribution 

Symmetric distribution 

 
 
 
 
 
 
 
 

 
15.7 15.8    15.9 16.0 16.1 16.2 16.3 

Mean 

Small standard deviation Large standard deviation 

15.7 15.8 15.9 16.0 16.1 16.2 16.3 

Mean 
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Distribution of Data 

A third descriptive statistic used to measure quality characteristics is the shape of 

the distribution of the observed data. When a distribution is symmetric, there are 

the same number of observations below and above the mean. This is what we 

commonly find when only normal variation is present in the data. When a 

disproportionate number of observations are either above or below the mean, we 

say that the data has a skewed distribution. Figure 6-2 shows symmetric and 

skewed distributions for the bot- tling operation. 
 

 

 
 

 

 

 

 

 

 

 

 

 

 
€  Control   chart 

A graph that shows 

whether a sample of 

data falls within the 

common or normal 

range of variation. 

€ Out  of  control 

The situation in which 

a plot of data falls 

outside preset control 

limits. 

Statistical process control methods extend the use of descriptive statistics to monitor 

the quality of the product and process. As we have learned so far, there are 

common and assignable causes of variation in the production of every product. 

Using statistical process control we want to determine the amount of variation  

that is common or nor- mal. Then we monitor the production process to make sure 

production stays within this normal range. That is, we want to make sure the 

process is in a state of control. The most commonly used tool for monitoring the 

production process is a control chart. Different types of control charts are used to 

monitor different aspects of the produc- tion process. In this section we will learn 

how to develop and use control charts. 

Developing Control Charts 

A control chart (also called process chart or quality control chart) is a graph that 

shows whether a sample of data falls within the common or normal range of 

varia- tion. A control chart has upper and lower control limits that separate 

common from assignable causes of variation. The common range of variation is 

defined by the use of control chart limits. We say that a process is out of control 

when a plot of data reveals that one or more samples fall outside the control limits. 

Figure 6-3 shows a control chart for the Cocoa Fizz bottling operation. The x 

axis represents samples (#1, #2, #3, etc.) taken from the process over time. The y 

axis rep- resents the quality characteristic that is being monitored (ounces of 

liquid). The cen- ter line (CL) of the control chart is the mean, or average, of the 

quality characteristic that is being measured. In Figure 6-3 the mean is 16 ounces. 

The upper control limit (UCL) is the maximum acceptable variation from the 

mean for a process that is in a state of control. Similarly, the lower control limit 

(LCL) is the minimum acceptable variation from the mean for a process that is in 

a state of control. In our example, the 
 

 

 
Quality control chart 
for Cocoa Fizz 

  FIGURE 6-3  

STATISTICAL PROCESS CONTROL METHODS 

Observation out of control 

Variation due to 

assignable causes 
UCL = (16.2) 

 
 

CL = (16.0) 
    Variation due 

to normal causes 

LCL = (15.8) 
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upper and lower control limits are 16.2 and 15.8 ounces, respectively. You can see 

that if a sample of observations falls outside the control limits we need to look for 

assigna- ble causes. 

The upper and lower control limits on a control chart are usually set at ±3 stan- 

dard deviations from the mean. If we assume that the data exhibit a normal 

distribu- tion, these control limits will capture 99.74 percent of the normal 

variation. Control limits can be set at ±2 standard deviations from the mean. In 

that case, control limits would capture 95.44 percent of the values. Figure 6-4 

shows the percentage of values that fall within a particular range of standard 

deviation. 

Looking at Figure 6-4, we can conclude that observations that fall outside the set 

range represent assignable causes of variation. However, there is a small probability 

that a value that falls outside the limits is still due to normal variation. This is called 

Type I error, with the error being the chance of concluding that there are assignable 

causes of variation when only normal variation exists. Another name for this is 

alpha risk ( a), where alpha refers to the sum of the probabilities in both tails of the 

distribution that falls outside the confidence limits. The chance of this happening is 

given by the percentage or probability represented by the shaded areas of Figure 6-5. 

For limits of ±3 standard deviations from the mean, the probability of a Type I error 

is .26% (100% — 99.74%), whereas for limits of ±2 standard deviations it is 4.56% 

(100% — 95.44%). 

Types of Control Charts 

Control charts are one of the most commonly used tools in statistical process 

control. They can be used to measure any characteristic of a product, such as the 

weight of a cereal box, the number of chocolates in a box, or the volume of 

bottled water. The different characteristics that can be measured by control charts 

can be divided into two groups: variables and attributes. A control chart for 

variables is used to monitor characteristics that can be measured and have a 

continuum of values, such as height, weight, or volume. A soft drink bottling 

operation is an example of a variable mea- sure, since the amount of liquid in the 

bottles is measured and can take on a number of different values. Other examples 

are the weight of a bag of sugar, the temperature of a baking oven, or the 

diameter of plastic tubing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
€ Variable 

A product 

characteristic that can 

be measured and has a 

continuum of values 

(e.g., height, weight, or 

volume). 
€ Attribute 

A product 

characteristic that has 

a discrete value and 

can be counted. 
 

Percentage of values captured by 

different ranges of standard 

deviation 

Chance of Type I error for ±3o 

(sigma-standard deviations) 
FIGURE 6-4 FIGURE 6-5 



 

 

  

Type 1 error is .26% 

–3 –2 Mean 

99.74% 

+2 +3 
–3 –2 Mean 

95.44% 

99.74% 

+2 +3 
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A control chart for attributes, on the other hand, is used to monitor 

characteristics that have discrete values and can be counted. Often they can be 

evaluated with a sim- ple yes or no decision. Examples include color, taste, or 

smell. The monitoring of attributes usually takes less time than that of variables 

because a variable needs to be measured (e.g., the bottle of soft drink contains 

15.9 ounces of liquid). An attribute requires only a single decision, such as yes or 

no, good or bad, acceptable or unaccept- able (e.g., the apple is good or rotten, the 

meat is good or stale, the shoes have a defect or do not have a defect, the lightbulb 

works or it does not work) or counting the number of defects (e.g., the number of 

broken cookies in the box, the number of dents in the car, the number of barnacles 

on the bottom of a boat). 

Statistical process control is used to monitor many different types of variables 

and attributes. In the next two sections we look at how to develop control charts 

for vari- ables and control charts for attributes. 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

€ x-bar chart 

A control chart used to 

monitor changes in the 

mean value of a 

process. 

Control charts for variables monitor characteristics that can be measured and have a 

continuous scale, such as height, weight, volume, or width. When an item is 

inspected, the variable being monitored is measured and recorded. For example, if we 

were produc- ing candles, height might be an important variable. Wecould take 

samples of candles and measure their heights. Two of the most commonly used 

control charts for variables mon- itor both the central tendency of the data (the 

mean) and the variability of the data (ei- ther the standard deviation or the range). 

Note that each chart monitors a different type of information. When observed values 

go outside the control limits, the process is as- sumed not to be in control. 

Production is stopped, and employees attempt to identify the cause of the problem 

and correct it. Next we look at how these charts are developed. 
Mean (x-Bar) Charts 

A mean control chart is often referred to as an x-bar chart. It is used to monitor 

changes in the mean of a process. To construct a mean chart we first need to 

construct the center line of the chart. To do this we take multiple samples and 

compute their means. Usually these samples are small, with about four or five 

observations. Each sample has its own mean, x. The center line of the chart is then 

computed as the mean of all " sample means, where " is the number of samples: 
 x 1 + x 2 + ··· x "  

x = 
" 

To construct the upper and lower control limits of the chart, we use the following 

formulas: 
Upper control limit (UCL)  = x + z x 

Lower control limit (LCL)  = x — z x 

where x = the average of the sample means 

z = standard normal variable (2 for 95.44% confidence, 3 for 99.74% 

confidence) 

x =standard deviation of the distribution of sample means, / 

computed as 

o = population (process) standard deviation 

n = sample size (number of observations per sample) 

Example 6.1 shows the construction of a mean (x-bar) chart. 

CONTROL CHARTS FOR VARIABLES 

n 
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A quality control inspector at the Cocoa Fizz soft drink company has taken 

twenty- five samples with four observations each of the volume of bottles filled. 

The data and the computed means are shown in the table. If the standard 

deviation of the bottling operation is 0.14 ounces, use this information to develop 

control limits of three standard deviations for the bottling operation. 

 

Observations 

Sample (bottle volume in ounces)   Average Range 

 

 

22 

23 

24 

25 

Total 

 

• Solution 

The center line of 

the control data is 

the average of the 

samples: 

 

 

 

 

 

 

 

 

 

 
25 

Number  1  2  3  4  x  R  

1 15.8 
5 

16.0 
2 

15.8 
3 

15.9 
3 

15.91 0.1 
9 

2 16.1 
2 

16.0 
0 

15.8 
5 

16.0 
1 

15.99 0.2 
7 

3 16.0 
0 

15.9 
1 

15.9 
4 

15.8 
3 

15.92 0.1 
7 

4 16.2 
0 

15.8 
5 

15.7 
4 

15.9 
3 

15.93 0.4 
6 

5 15.7 
4 

15.8 
6 

16.2 
1 

16.1 
0 

15.98 0.4 
7 

6 15.9 
4 

16.0 
1 

16.1 
4 

16.0 
3 

16.03 0.2 
0 

7 15.7 
5 

16.2 
1 

16.0 
1 

15.8 
6 

15.96 0.4 
6 

8 15.8 
2 

15.9 
4 

16.0 
2 

15.9 
4 

15.93 0.2 
0 

9 16.0 
4 

15.9 
8 

15.8 
3 

15.9 
8 

15.96 0.2 
1 

10 15.6 
4 

15.8 
6 

15.9 
4 

15.8 
9 

15.83 0.3 
0 

11 16.1 
1 

16.0 
0 

16.0 
1 

15.8 
2 

15.99 0.2 
9 

12 15.7 
2 

15.8 
5 

16.1 
2 

16.1 
5 

15.96 0.4 
3 

13 15.8 
5 

15.7 
6 

15.7 
4 

15.9 
8 

15.83 0.2 
4 

14 15.7 
3 

15.8 
4 

15.9 
6 

16.1 
0 

15.91 0.3 
7 

15 16.2 
0 

16.0 
1 

16.1 
0 

15.8 
9 

16.05 0.3 
1 

16 16.1 
2 

16.0 
8 

15.8 
3 

15.9 
4 

15.99 0.2 
9 

17 16.0 
1 

15.9 
3 

15.8 
1 

15.6 
8 

15.86 0.3 
3 

18 15.7 
8 

16.0 
4 

16.1 
1 

16.1 
2 

16.01 0.3 
4 

19 15.8 
4 

15.9 
2 

16.0 
5 

16.1 
2 

15.98 0.2 
8 

20 15.9 
2 

16.0 
9 

16.1 
2 

15.9 
3 

16.02 0.2 
0 

21 16.1 16.0 16.0 15.8 16.00 0.2 
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4 

 
 

EXAMPLE 6.1 

Constructing a Mean (x-Bar) Chart 
 

The control 

limits are 

 

 

 
UCL = x + 

z 

 
LCL = x 

— z 

x = 15.95 + 3 (
.14 

)= 16.16 

x = 15.95 — 3 (
.14 

)= 15.74 
4 
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16.20 
 
 

16.10 
 
 

16.00 
 
 

15.90 
 
 

15.80 
 
 

15.70 
 
 

15.60 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

LCL CL UCL Sample Mean 

 

 

The resulting control chart is: 

 

 

 

This can also be computed using a spreadsheet as shown. 
 

A B C D E F G 

1 

2 X-Bar Chart: Cocoa Fizz 

3 

F7: 

=AVERAGE 

(B7:E7) 

4 

 

 
G7: 

=MAX(B7:E7)- 

MIN(B7:E7) 

 

5 Bottle Volume in 

Ounces 

6 Sample 

Num 

7 1 

 
8 2 

 
9 3 

 
1 4 

0 

1 5 

1 

1 6 

2 

1 7 

3 

1 8 

4 

1 9 

Obs 

1 

15.85 

 
16.12 

 
16.00 

 
16.20 

 
15.74 

 
15.94 

 
15.75 

 
15.82 

 
16.04 

Obs 

2 

16.02 

 
16.00 

 
15.91 

 
15.85 

 
15.86 

 
16.01 

 
16.21 

 
15.94 

 
15.98 

Obs 

3 

15.83 

 
15.85 

 
15.94 

 
15.74 

 
16.21 

 
16.14 

 
16.01 

 
16.02 

 
15.83 

Obs 

4 

15.9 

3 

16.0 

1 

15.8 

3 

15.9 

3 

16.1 

0 

16.0 

3 

15.8 

6 

15.9 

4 

15.9 

Averag 

e 

15.91 

 
16.00 

 
15.92 

 
15.93 

 
15.98 

 
16.03 

 
15.96 

 
15.93 

 
15.96 

Range 

 
0.1 

9 

0.2 

7 

0.1 

7 

0.4 

6 

0.4 

7 

0.2 

0 

0.4 

6 

0.2 

0 

0.2 

O
u

n
c
e

s
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5     8  1 

1 
6 

1 
0 

15.64 15.86 15.94 15.8 
9 

15.83 0.3 
0 

1 
7 

1 
1 

16.11 16.00 16.01 15.8 
2 

15.99 0.2 
9 

1 
8 

1 
2 

15.72 15.85 16.12 16.1 
5 

15.96 0.4 
3 

1 
9 

1 
3 

15.85 15.76 15.74 15.9 
8 

15.83 0.2 
4 

2 
0 

1 
4 

15.73 15.84 15.96 16.1 
0 

15.91 0.3 
7 

2 
1 

1 
5 

16.20 16.01 16.10 15.8 
9 

16.05 0.3 
1 

2 
2 

1 
6 

16.12 16.08 15.83 15.9 
4 

15.99 0.2 
9 

2 
3 

1 
7 

16.01 15.93 15.81 15.6 
8 

15.86 0.3 
3 

2 
4 

1 
8 

15.78 16.04 16.11 16.1 
2 

16.01 0.3 
4 

2 
5 

1 
9 

15.84 15.92 16.05 16.1 
2 

15.98 0.2 
8 

2 
6 

2 
0 

15.92 16.09 16.12 15.9 
3 

16.02 0.2 
0 

2 
7 

2 
1 

16.11 16.02 16.00 15.8 
8 

16.00 0.2 
3 

2 
8 

2 
2 

15.98 15.82 15.89 15.8 
9 

15.90 0.1 
6 

2 
9 

2 
3 

16.05 15.73 15.73 15.9 
3 

15.86 0.3 
2 

3 
0 

2 
4 

16.01 16.01 15.89 15.8 
6 

15.94 0.1 
5 

3 
1 

2 
5 

16.08 15.78 15.92 15.9 
8 

15.94 0.3 
0 

3 
2 

     15.95 0.2 
9 

3 
3 

 Number of 
Samples 

2 
5 

 Xbar- 
bar 

R-bar 

3 
4 

Number of Observations 
per Sample 

4    

3 

5 
      G32: 

=AVERAGE( 

G7:G31) 

 

 F32: 

=AVERAGE( 

F7:F31) 

 

3 
6 
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 A B C D E F G 

39 Computations for X-Bar 

Chart 

    

 D40: 
=F32 

 

4 
0 

Overall Mean (Xbar- 

bar) = 

15.95      

41  Sigma for 

Process = 

0.14 ounces   

 D42: 

=D41/SQRT(D 

34) 

 

4 
2 

Standard Error of the 

Mean = 

0.07      

4 
3 

Z-value for control 

charts = 

3    

44        

 D45: 

=D40 

 

45  CL: Center 

Line = 

15.95  
 

 

  

D46: =D40- 

D43*D42 

 

4 

6 
LCL: Lower Control 

Limit = 

15.74  
 

D47: 

=D40+D43*D 

42 

  

4 
7 

UCL: Upper Control 

Limit = 

16.16      

 

 

 

 

Another way to construct the control limits is to use the sample range as an 

estimate of the variability of the process. Remember that the range is simply the 

dif- ference between the largest and smallest values in the sample. The spread of 

the range can tell us about the variability of the data. In this case control limits 

would be constructed as follows: 
 

Upper control limit (UCL)  = x + A2 R 
 

 

Lower control limit (LCL) = x — A2 R 
where  x = average of the samplemeans 

R = average range of thesamples 
A2 = factor obtained from Table 6-1. 

Notice that A2 is a factor that includes three standard deviations of ranges and is 
de- pendent on the sample size being considered. 
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25 

 
 

A quality control inspector at Cocoa Fizz is using the data from Example 6.1 to develop control 

limits. If the average range (R) for the twenty-five samples is .29 ounces (computed as 7.17) and the 

average mean (x) of the observations is 15.95 ounces, develop three-sigma control limits for the 

bottling operation. 

 

• Solution 

x = 15.95 ounces R = .29 

 

The value of A2 is obtained from Table 6.1. For n = 4, A2 = .73. This leads to the following 

limits: 

 

The center of the control chart = CL = 15.95 ounces 

UCL = x + A2 R = 15.95 + (.73)(.29) = 16.16 

LCL = x — A2 R = 15.95 — (.73)(.29) = 15.74 

EXAMPLE 6.2 

Constructing 
a Mean (x-Bar) 
Chart from the 
Sample Range 
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Factors for three-sigma 
control limits of x and 

R-charts Source: Factors 

adapted from the 

ASTM Manual on Quality 

Control of Materials. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

€ Range (R) chart 

A control chart that 

monitors changes in the 

dispersion or variability 

of process. 

 

Range (R) Charts 

Range (R) charts are another type of control chart for variables. Whereas x-bar 

charts measure shift in the central tendency of the process,  range  charts  

monitor the dispersion or variability of the process. The method for developing 

and using R-charts is the same as that for x-bar charts. The center line of the 

control chart is the average range, and the upper and lower control limits are 

computed as fol- lows: 
 
 

CL = R 

UCL = D4  R 

 

LCL = D3  R 

   TABLE 6-1  
Sample Size 

 
n 

Factor for x-Chart 

A2 

Factors for R-Chart 

D3 D4 

2  1.88 0 3.27 

3  1.02 0 2.57 

4  0.73 0 2.28 

5  0.58 0 2.11 

6  0.48 0 2.00 

7  0.42 0.08 1.92 

8  0.37 0.14 1.86 

9  0.34 0.18 1.82 

10  0.31 0.22 1.78 

11  0.29 0.26 1.74 

12  0.27 0.28 1.72 

13  0.25 0.31 1.69 

14  0.24 0.33 1.67 

15  0.22 0.35 1.65 

16  0.21 0.36 1.64 

17  0.20 0.38 1.62 

18  0.19 0.39 1.61 

19  0.19 0.40 1.60 

20  0.18 0.41 1.59 

21  0.17 0.43 1.58 

22  0.17 0.43 1.57 

23  0.16 0.44 1.56 

24  0.16 0.45 1.55 

25  0.15 0.46 1.54 
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where values for D4 and D3 are obtained from Table 

6-1. 



184  • CHAPTER 6 STATISTICAL QUALITY CONTROL 
 

0.60 
 

 
0.50 
 

 
0.40 
 

 
0.30 
 

 
0.20 
 

 
0.10 

0.00 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

 

 

The quality control inspector at Cocoa Fizz would like to develop a range (R) 

chart in order to mon- itor volume dispersion in the bottling process. Use the  

data from Example 6.1 to develop control limits for thesample range. 

 

• Solution 

From the data in Example 6.1 you can see that the average sample range is: 

 

R = 
7.17 

25 

R = 0.29 

n = 4 

 
EXAMPLE 6.3 

Constructing a Range (R) 

Chart 

 

From Table 6-1 for n = 4: 

 
D4 = 2.28 
D3 = 0 
UCL = D4 R = 2.28 (0.29) = 0.6612 
LCL = D3 R = 0 (0.29) = 0 

 

The resulting control chart is: 
 

 
 
 

0.70 

 

 

 

 

LCL CL UCL Sample Mean 

 
 
 

 

Using Mean and Range Charts Together 

You can see that mean and range charts are used to monitor different variables. 

The mean or x-bar chart measures the central tendency of the process, whereas 

the range chart measures the dispersion or variance of the process. Since both 

vari- ables are important, it makes sense to monitor a process using both mean 

and 

O
u

n
ce

s 
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CONTROL CHARTS FOR ATTRIBUTES 

 

 
Process shifts captured by x- 
charts and R-charts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
range charts. It is possible to have a shift in the mean of the product but not a 

change in the dispersion. For example, at the Cocoa Fizz bottling plant the ma- 

chine setting can shift so that the average bottle filled contains not 16.0 ounces, 

but 

15.9 ounces of liquid. The dispersion could be the same, and this shift would    

be detected by an x-bar chart but not by a range chart. This is shown in part (a) 

of Figure 6-6. On the other hand, there could be a shift in the dispersion of the 

prod- uct without a change in the mean. Cocoa Fizz may still be producing 

bottles with an average fill of 16.0 ounces. However, the dispersion of the 

product may have in- creased, as shown in part (b) of Figure 6-6. This  

condition would be detected by a range chart but not by an x-bar chart.  

Because a shift in either the mean or the range means that the process is out of 

control, it is important to use both charts to monitor the process. 
 

 

 

Control charts for attributes are used to measure quality characteristics that are 

counted rather than measured. Attributes are  discrete  in  nature  and  entail  

simple yes-or-no decisions. For example, this could be the number of 

nonfunctioning lightbulbs, the proportion of broken eggs  in  a  carton,  the  

number of rotten ap- ples, the number of scratches on a tile, or the number of 

FIGURE 6-6 

15.8 15.9 16.0 16.1 16.2 
Mean 

15.8 15.9 16.0 16.1 16.2 
Mean 

x–-chart 
UCL  

 

LCL 

UCL    
R-chart 

LCL 

(a) Shift in mean detected by x
–
-chart but not by R-chart 

15.8 15.9 16.0 16.1 16.2 
Mean 

15.8 15.9 16.0 16.1 16.2 
Mean 

x–-chart 
UCL  

 
UCL    

R-chart 

LCL LCL    

(b) Shift in dispersion detected by R-chart but not by x
–
-chart 
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complaints issued. Two 
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of the most common types of control charts for attributes are p-charts and c- 

charts. 

P-charts are used to measure the proportion of items in a sample that are 

defective. Examples are the proportion of broken cookies in a batch and the pro- 

portion of cars produced with a misaligned fender. P-charts are appropriate when 

both the number of defectives measured and the size of the total sample can be 

counted. A proportion can then be computed and used as the statistic of mea- 

surement. 

C-charts count the actual number of defects. For example, we can count the 

num- ber of complaints from customers in a month, the number of bacteria on a 

petri dish, or the number of barnacles on the bottom of a boat. However, we 

cannot compute the proportion of complaints from customers, the proportion of 

bacteria on a petri dish, or the proportion of barnacles on the bottom of aboat. 

 

Problem-Solving Tip: The primary difference between using a p-chart and a c- 

chart is as follows. A p-chart is used when both the total sample size and the 

number of defects can be computed. A c-chart is used when we can compute  

only the number of defects but cannot compute the propor- tion that is defective. 

 
 

P-Charts 

P-charts are used to measure the proportion that is defective in a sample. The 

com- putation of the center line as well as the upper and lower control limits is 

similar to the computation for the other kinds of control charts. The center line is 

computed as the average proportion defective in the population, p. This is 

obtained by taking a 

number of samples of observations at random and computing the average value of p 

across all samples. 

To construct the upper and lower control limits for a p-chart, we use the 

following formulas: 

 
UCL = p + z  p 

LCL = p — z p 

 

where z = standard normal variable 

p = the sample proportion defective 

p = the standard deviation of the average proportion defective 

 

As with the other charts, z is selected to be either 2 or 3 standard deviations, 

depend- ing on the amount of data we wish to capture in our control limits. 

Usually, however, they are set at 3. 

The sample standard deviation is computed as follows: 

 

 
€ P-chart 

A control chart that 

monitors the proportion 

of defects in a sample. 

 

 

 

 
where n is the sample size. 

 
 

p(1 — p)  

p = 
n
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EXAMPLE 

6.4 

Constructinga 

p-Chart 

 

A production manager at a tire manufacturing plant has inspected the number of 

defective tires in twenty random samples with twenty observations each. 

Following are the number of defective tires found in each sample: 
 

 
 

Sampl 

e 

Numbe 

r 

Number 

of   

Defective 

Tires 

Number of 

Observatio 

ns Sampled 

 

Fractio 

n 

Defectiv 

e 

1 3 20 .15 

2 2 20 .10 

3 1 20 .05 

4 2 20 .10 

5 1 20 .05 

6 3 20 .15 

7 3 20 .15 

8 2 20 .10 

9 1 20 .05 

10 2 20 .10 

11 3 20 .15 

12 2 20 .10 

13 2 20 .10 

14 1 20 .05 

15 1 20 .05 

16 2 20 .10 

17 4 20 .20 

18 3 20 .15 

19 1 20 .05 
20 1 20 .05 

Tota 

l 

40 400  

 
 

Construct a three-sigma control chart ( z = 3) with this information. 

 
 

• Solution 

The center line of the chart is 

 

CL = p = 
total number of defective tires 

= 
40 

= .10 

total number of observations400  p(1 — p)  (.10)(.90) 

p = n 
=  20 

= .067 

UCL = p + z 

( LCL = p — 

z ( 

p) = .10 + 3(.067) = .301 

p) = .10 — 3(.067) = —.101 9: 0 
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In this example the lower control limit is negative, which sometimes occurs 

because the computa- tion is an approximation of the binomial distribution. 

When this occurs, the LCL is rounded up to zero because we cannot have a 

negative control limit. 
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0.35 

 
 

0.3 
 

 

0.25 

 
 

0.2 

 

 
0.15 

 
 

0.1 

 
 

0.05 

 

 
0 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Sample Number 

LCL CL UCL p 

 

 

The resulting control chart is as follows: 
 

 

 

This can also be computed using a spreadsheet as shown below. 

 
 A B C D 

1    

2 Constructing a p-Chart  

3     

4 Size of Each 

Sample 

20  

5 Number 

Samples 

20  

6     

 

7 

 

Sample 

# 

# 

Defectiv 

e 

Tires 

Fracti 

on 

Defecti 
ve 

 C8: 

=B8/C$ 

4 

 

 

8 1 3 0.15  

9 2 2 0.10  

1 
0 

3 1 0.05  

1 
1 

4 2 0.10  

1 
2 

5 1 0.05  

1 
3 

6 3 0.15  

1 
4 

7 3 0.15  

1 
5 

8 2 0.10  

1 
6 

9 1 0.05  

1 
7 

1 
0 

2 0.10  

1 1 3 0.15  

F
ra

c
ti
o
n

 D
e

fe
c
ti
v
e
 (

p
) 
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8 1    

1 
9 

1 
2 

2 0.10  

2 
0 

1 
3 

2 0.10  

2 
1 

1 
4 

1 0.05  

2 
2 

1 
5 

1 0.05  

2 
3 

1 
6 

2 0.10  

2 
4 

1 
7 

4 0.20  

2 
5 

1 
8 

3 0.15  

2 
6 

1 
9 

1 0.05  

2 
7 

2 
0 

1 0.05  

 
 A B C D E F 

29 Computations for p-Chart    

 C29: 

=SUM(B8:B27)/(C 

4*C5) 

  

30  p bar 

= 

0.100  
 

 

 

C30: 

=SQRT((C29*(1- 

C29))/C4) 
31  Sigma_p 

= 

0.067  

   

32 Z-value for control 

charts= 

3    

33       
 C33: 

=C29 

 

34 CL: Center 

Line = 

0.100  
 

 

   

C34: =MAX(C$29- 

C$31*C$30,0) 35 LCL: Lower Control 

Limit = 

0.000  
 

 C35: 

=C$29+C$31*C 
$30 

 

36 UCL: Upper Control 

Limit = 

0.301    
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The average n um ber of complaints per week is 44 = 2.2. Therefore, c = 2.2. 

art for this example: 
 

 

 

 

 
7 

 

6 

 

5 

 
 

4 

 
 

3 

 
 

2 

LCL CL UCL  p 

 

 
€ C-chart 

A control chart 

used to monitor 

the number of 

defects per unit. 

C-charts are used to monitor the number of defects per unit. Examples are the 

number of returned meals in a restaurant, the number of trucks that exceed their 

weight limit in a month, the number of discolorations on a square foot of carpet, 

and the number of bacteria in a milliliter of water. Note that the types of units of 

measurement we are considering are a period of time, a surface area, or  a 

volume of liquid. 

The average number of defects, c, is the center line of the control chart. The 

upper and lower control limits are computed as follows: 
UCL = c + z 

LCL = c — z 
 

 

 
 

 
 

Computing a 

C-Chart 

The number of weekly customer complaints are monitored at a large hotel using a c-chart. Com- 

plaints have been recorded over the past twenty weeks. Develop three-sigma control limits using the 

following data: 

 
Tota 

 

Week 1 2 3 4  5 6   7  8  9 10 11 12 13 14 15 16 17 18 
19 

20 

No. of    

Complain 

ts 

3 2 3 1  3 3  2   1 3   1 3 4 2 1 1 1 3 2 
2 

3 44 

 
   

 

• Solution 
20 

UCL = c + z c = 2.2 + 32.2 = 6.65 

LCL = c — z c = 2.2 — 32.2 = —2.25 9: 0 

As in the previous example, the LCL is negative and should be rounded up to zero. Following is the 

control ch 
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28 Z-value for control 1.48323 C31: =C26 
charts = 29 
30 

 
Sigma_c = 

97 C32: =MAX(C$26- 
C$27*C$29,0) C33: 

31  2.20 =C$26+C$27*C$29 

32 CL: Center 0.00  

 Line= 6.65  

33 LCL: Lower Control 

Limit = 

34 UCL: Upper Control 

Limit = 

This can also be computed using a spreadsheet as shown below. 

A B 

1 

2 Computing a C-Chart 

3 

Number of 

4 Wee Complaint 

k s 

5 1 3 

6 2 2 

7 3 3 

8 4 1 

9 5 3 

10 6 3 

11 7 2 

12 8 1 

13 9 3 

14 10 1 

15 11 3 

16 12 4 

17 13 2 

18 14 1 

19 15 1 

20 16 1 

21 17 3 

22 18 2 

23 19 2 

24 20 3 

A B C D E F G 

26 Computations for a C- 

Chart 
27 c bar 

= 

2.2 
3 

C27: =AVERAGE(B5:B24) 

C30: 

=SQRT(C27) 
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Before You Go On 

We have discussed several types of statistical quality control (SQC) techniques. One category of SQC techniques 

consists of descriptive statistics tools such as the mean, range, and standard deviation. These tools are used to 

describe quality characteristics and relationships. Another category of SQC techniques consists of statistical 

process control (SPC) methods that are used to monitor changes in the production process. To understand SPC 

methods you must understand the differences between common and assignable causes of variation. Common 
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€ Process 

capability 

The ability of a 

production process to 

meet or exceed preset 

specifications. 

€ Product 

specifications Preset 

ranges of acceptable 

quality 

characteristics. 

So far we have discussed ways of monitoring the production process to ensure that it is 

in a state of control and that  there are no assignable causes of variation. A critical 

aspect of statistical quality control is evaluating the ability of a production process 

to meet or exceed preset specifications. This is called process capability. To 

understand exactly what this means, let’s look more closely at the term 

specification. Product specifica- tions, often called tolerances, are preset ranges of 

acceptable quality characteristics, such as product dimensions. For a product to be 

considered acceptable, its characteris- tics must fall within this preset range. 

Otherwise, the product is not acceptable. Prod- uct specifications, or tolerance 

limits, are usually established by design engineers or product design specialists. 

For example, the specifications for the width of a machine part may be 

specified as 15 inches ±.3. This means that the width of the part should be 15 

inches, though it is acceptable if it falls within the limits of 14.7 inches and 15.3 

inches. Similarly, for Cocoa Fizz, the average bottle fill may be 16 ounces with 

tolerances of ±.2 ounces. Although the bottles should be filled with 16 ounces of 

liquid, the amount can be as low as 15.8 or as high as 16.2 ounces. 

Specifications for a product are preset on the basis of how the product is going 

to be used or what customer expectations are. As we have learned, any 

production process has a certain amount of natural variation associated with it. To 

be capable of producing an acceptable product, the process variation cannot 

exceed the preset spec- ifications. Process capability thus involves evaluating 

process variability relative to preset product specifications in order to determine 

whether the process is capable of producing an acceptable product. In this section 

we will learn how to measure process capability. 
Measuring Process Capability 

Simply setting up control charts to monitor whether a process is in control does 

not guarantee process capability. To produce an acceptable product, the process 

must be capable and in control before production begins. Let’s look at three 

examples of process variation relative to design specifications for the Cocoa Fizz 

soft drink company. Let’s say that the specification for the acceptable volume of 

liquid is preset at 16 ounces ±.2 ounces, which is 15.8 and 16.2 ounces. In part (a) 

of Figure 6-7 the process produces 99.74 percent (three sigma) of the product with 

volumes between 

and 16.2 ounces. You can see that the process variability closely matches the 

pre- set specifications. Almost all the output falls within the preset specification 

range. 

PROCESS CAPABILITY 

 
causes of variation are based on random causes that cannot be identi fied. A certain amount of common or 

normal variation occurs in every process due to differences in materials, workers, machines, and other factors. 

Assignable causes of variation, on the other hand, are variations that can be identi fied and eliminated. An im- 

portant part of statistical process control (SPC) is monitoring the production process to make sure that  the 

only variations in the process are those due to common or normal causes. Under these conditions we say that a 

production process is in a state ofcontrol. 
You should also understand the different types of quality control charts that are used to monitor the produc- 

tion process: x-bar charts, R-range charts, p-charts, and c-charts. 
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LSL USL 
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Specification Width 
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Process Variability 3 

FIGURE 6-7 

 

In part (b) of Figure 6-7, however, the process produces 99.74 percent (three 

sigma) of the product with volumes between 15.7 and 16.3 ounces. The process 

vari- ability is outside the preset specifications. A large percentage of the product 

will fall outside the specified limits. This means that the process is not capable of 

producing the product within the presetspecifications. 

Part (c) of Figure 6-7 shows that the production process produces 99.74 

percent (three sigma) of the product with volumes between 15.9 and 16.1 ounces. 

In this case the process variability is within specifications and the process 

exceeds the minimum capability. 

Process capability is measured by the process capability index, Cp, which is 

com- puted as the ratio of the specification width to the width of the process 

variability: 

 

 

 

 

 

 

 

 

 

€ Processcapability 

index An index used 

to measure process 

capability. 

specification width 

Cp = 
process width 

USL — LSL 

= 
6

 

where the specification width is the difference between the upper specification 

limit (USL) and the lower specification limit (LSL) of the process. The process 

width is 
 

 

 
 

(a) Process variability meets specification width (b) Process variability outside specification width 
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Process 
Variability 

3 

(c) Process variability within 

specification width 

 

 

 

Relationship between process variability and 

specification width 
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ween 15.8 and 16.2 ounces, determine whic 

cations. 

he Cp values, only ma 
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value at 

is capable of fi 

or above 1. 

lling bottles within specificat 

EXAMPLE 6.6 

Computing theCP 

Value at Cocoa 
Fizz 

 

computed as 6 standard deviations (6o) of the process being monitored. The 

reason we use 6o is that most of the process measurement (99.74 percent) falls 

within ±3 standard deviations, which is a total of 6 standard deviations. 

There are three possible ranges of values for Cp that also help us interpret its 

value: 

Cp = 1: A value of Cp equal to 1 means that the process variability just meets 

speci- fications, as in Figure 6-7(a). We would then say that the process is 

minimally capable. 

Cp Š 1: A value of Cp below 1 means that the process variability is outside the 

range of specification, as in Figure 6-7(b). This means that the process is not 

ca- pable of producing within specification and the process must be 

improved. 

Cp Š 1: A value of Cp above 1 means that the process  variability  is  tighter 

than specifications and the process exceeds minimal capability, as in  

Figure 6-7(c). 

A Cp value of 1 means that 99.74 percent of the products produced will fall 

within the specification limits. This also means that .26 percent (100% — 

99.74%) of the products will not be acceptable. Although this percentage sounds 

very small, when we think of it in terms of parts per million (ppm) we can see 

that it can still result in a lot of defects. The number .26 percent corresponds to 

2600 parts per million (ppm) de- fective (0.0026 × 1,000,000). That number can 

seem very high if we think of it in terms of 2600 wrong prescriptions out of a 

million, or 2600 incorrect medical proce- dures out of a million, or even 2600 

malfunctioning aircraft out of a million. You can see that this number of defects is 

still high. The way to reduce the ppm defective is to increase process capability. 
 

 
 

 Three bottling machines at Cocoa Fizz are being evaluated for their capability: 
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( ) 

  FIGURE 6-8  

 

Cp is valuable in measuring process capability. However, it has one 

shortcoming: it assumes that process variability is centered on the speci fication 

range. Unfortunately, this is not always the case. Figure 6-8 shows data from the 

Cocoa Fizz example. In the figure the specification limits are set between 15.8  

and 16.2 ounces, with a mean of 
16.0 ounces. However, the process variation is not centered; it has a mean of 

15.9 ounces. Because of this, a certain proportion of products will fall outside the 

specification range. 

The problem illustrated in Figure 6-8 is not uncommon, but it can lead to 

mistakes in the computation of the Cp measure. Because of this, another measure 
for process capability is used more frequently: 

 

Cpk  = min  
USL —   

, 
— LSL 

3 3 
where µ = the mean of the process 

o = the standard deviation of the process 

This measure of process capability helps us address a possible lack of centering of 

the process over the specification range. To use this measure, the process 

capability of each half of the normal distribution is computed and the minimum 

of the two is used. 
Looking at Figure 6-8, we can see that the computed Cp is 1: 

Process mean: µ = 15.9 

Process standard deviation o = 0.067 

LSL = 15.8 
USL = 16.2 

0.4 

Cp = 
6(0.067) 

= 1
 

The Cp value of 1.00 leads us to conclude that the process is capable. 

However, from the graph you can see that the process is not centered on the 

specification range 
 

 
 

 

Process variability not centered 

across specification width 

Specification Width 

LSL USL 

 
 
 
 
 
 
 
 

 
15.7 15.8 15.9 16.0 16.1 16.2 16.3 

Mean 

Process Variability 3 
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( ) 

EXAMPLE 6.7 

Computing the 
Cpk Value 

Compute the Cpk measure of process capability for the following machine and interpret the findings. 

What value would you have obtained with the Cp measure? 

 
Machine Data: USL = 110 

LSL = 50 

Process o = 10 

Process µ = 70 

• Solution 
To compute the Cpk measure of process capability: 

Cpk = min ( 

( 

USL — 
,
— LSL 

3 3 

= min 
110 — 60 60 — 50 

3(10) 3(10) 
, 

) 

) 
= min (1.67, 0.33) 

= 0.33 

 
This means that the process is not capable. The Cp measure of process capability gives us the 

following measure, 

Cp= 
   60  

= 1 
6(10) 

leading us to believe that the process is capable. The reason for the difference in the measures is that 

the process is not centered on the speci fication range, as shown in Figure 6-9. 

 

and is producing out-of-spec products. Using only the Cp measure would lead to 

an incorrect conclusion in this case. Computing Cpk gives us a different answer 
and leads us to a different conclusion: 

 

Cpk  = min  
USL —   

, 
— LSL 

3 3 

Cpk = min (
 16.2 — 15.9 

,
 15.9 — 15.8 

)
 

3(.1) 
Cpk  = min (1.00, 0.33) 

.1 

Cpk = 
.3 

= .33 

3(.1) 

The computed Cpk value is less than 1, revealing that the process is not capable. 
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Six Sigma Quality 

The term Six Sigma® was coined by the Motorola Corporation in the 1980s to 

describe the high level of quality the company was striving to achieve. Sigma (o) 

stands for the number of standard deviations of the process. Recall that ±3 sigma 

(o) means that 2600 ppm are defective. The level of defects associated with Six 

Sigma is approximately 3.4 ppm. Figure 6-10 shows a process distribution with 

quality levels of 

±3 sigma (o) and ±6 sigma (o). You can see the difference in the number of 

defects produced. 

 

 
 

€ Six sigma 

quality A high 

level of quality 

associated with 

approximately 3.4 

defective parts per 

million. 
 

 

 

 

 
PPM defective for ±3o versus ±6o 
quality (not to scale) 

 FIGURE 6-10  
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Process capability of machines 

is a critical element of 

statistical process control. 

FIGURE 6-9 
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ACCEPTANCE SAMPLING 

 

To achieve the goal of Six Sigma, Motorola 

has instituted a quality focus in every 

aspect of its organization. Before a product 

is de- signed, marketing ensures that 

product char- acteristics are exactly what 

customers want. Operations ensures that 

exact product char- acteristics can be 

achieved through product design, the 

manufacturing process, and the materials 

used. The Six Sigma concept is an integral 

part of other functions as well. It is used in 

the finance and accounting depart- ments 

to reduce costing errors and the time 

required to close the books at the end of the 

month. Numerous other companies, such  

as General Electric and Texas Instruments, 

have followed Motorola’s leadership and 

have also instituted the Six Sigma concept. 

In fact, the Six Sigma quality standard has 

become a benchmark in many industries. 

 

There are two aspects to implementing the Six Sigma concept. The first is the 

use of technical tools to identify and eliminate causes of quality problems. These 

technical tools include the statistical quality control tools discussed in this 

chapter. They also include the problem-solving tools discussed in Chapter 5, such 

as cause-and-effect di- agrams, flow charts, and Pareto analysis. In Six Sigma 

programs the use of these tech- nical tools is integrated throughout the entire 

organizational system. 

The second aspect of Six Sigma implementation is people involvement. In Six 

Sigma all employees have the training to use technical tools and are responsible 

for rooting out quality problems. Employees are given martial arts titles that 

reflect their skills in the Six Sigma process. Black belts and master black belts are 

individuals who have extensive training in the use of technical tools and are 

responsible for carrying out the implementation of Six Sigma. They are 

experienced individuals who oversee the measuring, analyzing, process 

controlling, and improving. They achieve this by acting as coaches, team leaders, 

and facilitators of the process of continuous improve- ment. Green belts are 

individuals who have sufficient training in technical tools to serve on teams or on 

small individual projects. 

Successful Six Sigma implementation requires commitment from top company 

leaders. These individuals must promote the process, eliminate barriers to 

implemen- tation, and ensure that proper resources are available. A key individual 

is a champion of Six Sigma. This is a person who comes from the top ranks of the 

organization and is responsible for providing direction and overseeing all aspects 

of the process. 
 

 

 

Acceptance sampling, the third branch of statistical quality control, refers to the 

LINKS TO PRACTICE 

Motorola, Inc. 
www.motorola.com 

http://www.motorola.com/
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process of randomly inspecting a certain number of items from a lot or batch in 

or- der to decide whether to accept or reject the entire batch. What makes 

acceptance 
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sampling different from statistical process control is that acceptance sampling is 

per- formed either before or after the process, rather than during the process. 

Acceptance sampling before the process involves sampling materials received 

from a supplier, such as randomly inspecting crates of fruit that will be used in a 

restaurant, boxes of glass dishes that will be sold in a department store, or metal 

castings that will be used in a machine shop. Sampling after the process involves 

sampling finished items that are to be shipped either to a customer or to a 

distribution center. Examples in- clude randomly testing a certain number of 

computers from a batch to make sure they meet operational requirements, and 

randomly inspecting snowboards to make sure that they are not defective. 

You may be wondering why we would only inspect some items in the lot and 

not the entire lot. Acceptance sampling is used when inspecting every item is not 

physi- cally possible or would be overly expensive, or when inspecting a large 

number of items would lead to errors due to worker fatigue. This last concern is 

especially im- portant when a large number of items are processed in a short 

period of time. An- other example of when acceptance sampling would be used is 

in destructive testing, such as testing eggs for salmonella or vehicles for crash 

testing. Obviously, in these cases it would not be helpful to test every item! 

However, 100 percent inspection does make sense if the cost of inspecting an item 

is less than the cost of passing on a defec- tive item. 

As you will see in this section, the goal of acceptance sampling is to 

determine the criteria for acceptance or rejection based on the size of the lot, 

the size of the sample, and the level of confidence we wish to attain. 

Acceptance sampling can be used for both attribute and variable measures, 

though it is most commonly used for attributes. In this section we will look at 

the different types of sampling plans and at ways to evaluate how well  

sampling plans discriminate between good and bad lots. 

 
Sampling Plans 

A sampling plan is a plan for acceptance sampling that precisely specifies the 

parame- ters of the sampling process and the acceptance/rejection criteria. The 

variables to be specified include the size of the lot ( N), the size of the sample 

inspected from the lot (n), the number of defects above which a lot is rejected (c), 

and the number of sam- ples that will betaken. 

There are different types of sampling plans. Some call for single sampling, in 

which a random sample is drawn from every lot. Each item in the sample is 

exam- ined and is labeled as either “good” or “bad.” Depending on the number of 

defects or “bad” items found, the entire lot is either accepted or rejected. For 

example, a lot size of 50 cookies is evaluated for acceptance by randomly 

inspecting 10 cookies from the lot. The cookies may be inspected to make sure 

they are not broken or burned. If 4 or more of the 10 cookies inspected are bad, 

the entire lot is rejected. In this exam- ple, the lot size N = 50, the sample size n = 

10, and the maximum number of defects at which a lot is accepted is c = 4. 
These parameters define the acceptance sampling plan. 

Another type of acceptance sampling is called double sampling. This provides an 

op- portunity to sample the lot a second time if the results of the first sample are 

inconclusive. In double sampling we first sample a lot of goods according to preset 

crite- ria for definite acceptance or rejection. However, if the results fall in the 

middle range, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sampling involves randomly 

inspecting items from a lot. 

 

 

 

 

 

 
€ Sampling plan 

A plan for acceptance 

sampling that precisely 

specifies the 

parameters of the 

sampling process and 

the 

acceptance/rejection 

criteria. 
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they are considered inconclusive and a second sample is taken. For example, a 

water treatment plant may sample the quality of the water ten times in random 

intervals throughout the day. Criteria may be set for acceptable or unacceptable 

water quality, such as .05 percent chlorine and .1 percent chlorine. However, a 

sample of water con- taining between .05 percent and .1 percent chlorine is 

inconclusive and calls for a sec- ond sample of water. 

In addition to single and double-sampling plans, there are multiple sampling 

plans. Multiple sampling plans are similar to double sampling plans except that 

criteria are set for more than two samples. The decision as to which sampling 

plan to select has a great deal to do with the cost involved in sampling, the time 

consumed by sampling, and the cost of passing on a defective item. In general, if 

the cost of collecting a sam- ple is relatively high, single sampling is preferred. An 

extreme example is collecting a biopsy from a hospital patient. Because the actual 

cost of getting the sample is high, we want to get a large sample and sample only 

once. The opposite is true when the cost of collecting the sample is low but the 

actual cost of testing is high. This may be the case with a water treatment plant, 

where collecting the water is inexpensive but the chemical analysis is costly. In 

this section we focus primarily on single sampling plans. 
 

(LTPD) 

The upper limit of the percentage of defective items consumers are willing to tolerate. 
 

 
 

€ Operating 
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curve 

A graph that shows the 

probability or chance 

of accepting a lot given 

various proportions of 

defects in the lot. 
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Operating Characteristic 

(OC) Curves 

As we have seen, 

different 

sampling plans 

have different 

capabilities for 

discriminat- ing 

between good 

and bad lots. At 

one extreme is 

100 percent 

inspection, which 

has perfect 

discriminating 

power. However, 

as the size of the 

sample inspected 

decreases, so does 

the chance of 

accepting a 

defective lot. We 

can show the 

discriminating 

power of a 

sampling plan on 

a graph by means 

of an operating 

characteristic 

(OC) curve. This 

curve shows the 

probability or 

chance of 

accepting a lot 

given various 

propor- tions of 

defects in the lot. 

Figure  6-11 

shows a typical 

OC curve. The x 

axis shows the 

percentage of 

items that are 

defective in a lot. 

This is called “lot 

quality.” The y 

axis shows the 

probability       or 

chance of 

accepting   a   lot. 

You can see that if we use 100 percent inspection we are certain of accepting only 

lots with zero defects. However, as the proportion of defects in the lot increases, 

our chance of accepting the lot decreases. For example, we have a 90 percent 

probability of accepting a lot with 5 percent defects and an 80 percent probability 

of accepting a lot with 8 percent defects. 

Regardless of which sampling plan we have selected, the plan is not perfect. 

That is, there is still a chance of accepting lots that are “bad” and rejecting 

“good” lots. The steeper the OC curve, the better our sampling plan is for 

discriminating be- tween “good” and “bad.” Figure 6-12 shows three different 

OC curves, A, B, and C. Curve A is the most discriminating and curve C the 

least. You can see that the steeper the slope of the curve, the more discriminating 

is the sampling plan. When 100 percent inspection is not possible, there is a 

certain amount of risk for con- sumers in accepting defective lots and a certain 

amount of risk for producers in re- jecting good lots. 

There is a small percentage of defects that consumers are willing to accept. 

This is called the acceptable quality level (AQL) and is generally in the order of 1 

– 2 percent. However, sometimes the percentage of defects that passes through is 

higher than the AQL. Consumers will usually tolerate a few more defects, but at 

some point the num- ber of defects reaches a threshold level beyond which 

consumers will not tolerate them. This threshold level is called the lot tolerance 

percent defective (LTPD). The 
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Example of an operating characteristic 
(OC) curve 

OC curves with different steepness levels and 
different levels of discrimination 

 

  
 

 
 

LTPD is the upper limit of the percentage of defective items consumers are 

willing to tolerate. 

Consumer’s risk is the chance or probability that a lot will be accepted that 

con- tains a greater number of defects than the LTPD limit. This is the probability 

of mak- ing a Type II error — that is, accepting a lot that is truly “bad.” 

Consumer’s risk or Type II error is generally denoted by beta ( þ). The 

relationships among AQL, LTPD, and þ are shown in Figure 6-13. Producer’s  

risk is the chance or probability that a lot containing an acceptable quality level 

will be rejected. This is the probability of mak- ing a Type I error — that is, 

rejecting a lot that is “good.” It is generally denoted by alpha (a). Producer’s risk 

is also shown in Figure 6-13. 

We can determine from an OC curve what the consumer ’s and producer’s 

risks are. However, these values should not be left to chance. Rather, sampling 

plans are usually designed to meet specific levels of consumer’s and producer’s 

risk. For example, one common combination is to have a consumer’s risk (þ) of 

10 percent and a producer’s risk (a) of 5 percent, though many other 

combinations are possible. 

 

Developing OC Curves 

An OC curve graphically depicts the discriminating power of a sampling plan. To 

draw an OC curve, we typically use a cumulative binomial distribution to obtain 

 

 
€ Consumer’s risk 

The chance of 

accepting a lot that 

contains a greater 

number of defects than 

the LTPD limit. 

€ Producer’s  risk 

The chance that a lot 

containing an 

acceptable quality level 

will be rejected. 
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   TABLE 6-2 

 
 

Probability or Chance 

An OC curve showing producer’s risk (a) aonf dAccepting a Lot 

consumer’s risk (þ) 1.00 
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Probability of rejecting 

a “good” lot (producer's risk ) 

 
 
 
 
 
 
 
 
 

 
Probability of accepting a 

“bad” lot (consumer's risk ) 

 

.05 

AQL 

.10 .15 .20 .25 

LTPD 

.30 .35 

Good 

Lots 
Poor Quality  Lot Quality 

Tolerated Bad Quality Not Tolerated 

 
 
 
 
 

 

probabilities of accepting a lot given varying levels of lot defects.1 The 

cumulative binomial table is found in Appendix C. A small part of this table is 

reproduced in Table 6-2. The top of the table shows values of p, which 

represents the proportion of defective items in a lot (5 percent, 10 percent, 20 

percent, etc.). The left-hand column shows values of n, which represent the 

sample size being considered, and x represents the cumulative number of 

defects found. Let’s use an example to illus- trate how to develop an OC curve 

for a specific sampling plan using the informa- tion from Table 6-2. 
 

 

 

Partial Cumulative 
Binomial Probability 

Table 

 

 

 

 

 

 
1For n Š 20 and p Š .05 a Poisson distribution is generally used. 

 FIGURE 6-13  

 

Proportion of Items Defective (p) 

.05 .10 .15 .20 .25 .30 .35 .40 .45 .50 

n x           

5 0 .7738 .5905 .4437 .3277 .2373 .1681 .1160 .0778 .0503 .0313 

 1 .9974 .9185 .8352 .7373 .6328 .5282 .4284 .3370 .2562 .1875 

 2 .9988 .9914 .9734 .9421 .8965 .8369 .7648 .6826 .5931 .5000 
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Let’s say that we want to develop an OC curve for a sampling plan in which a 

sample of n = 5 items is drawn from lots of N = 1000 items. The accept/reject 

criteria are set up in such a way that we accept a lot if no more than one defect (c 
= 1) is found. 

 

• Solution 

Let’s look at the partial binomial distribution in Table 6-2. Since our criteria 

require us to sample n = 5, we will go to the row where n equals 5 in the left-hand 

column. The “x” column tells us the cumulative number of defects found at which 

we reject the lot. Since we are not allowing more than one defect, we look for an x 

value that corresponds to 1. The row corresponding to n = 5 and x = 1 tells us our 

chance or probability of accepting lots with various proportions of defects using 

this sampling plan. For example, with this sampling plan we have a 99.74% 

chance of accepting a lot with 5% defects. If we move down the row, we can see 

that we have a 91.85% chance of accepting a lot with 10% defects, a 83.52% 

chance of accepting a lot with 15% defects, and a 73.73% chance of accepting a 

lot with 20% defects. Using these values and those remaining in the row, we can 

con- struct an OC chart for n = 5 and c = 1. This is shown in Figure 6-14. 

 
EXAMPLE 6.8 

Constructing an OC 

Curve 

 

 
Probability or Chance 

of Accepting a Lot  

 
OC curve with n = 5 and c = 1 

1.00 

.90 

.80 

.9974  
.9185 

OC Curve with n = 5, c = 1 

 
.8352 

 

 
.70 

.60 

 

.50 

.40 

.30 

.20 
 

.10 

.7373 

.6328 

 

.5282 

.4284 

.3370 

.2562 

 

0 .05 .10 .15 .20 .25 .30 .35 .40 .45 

Proportion of Defective Items in Lot 

(Lot Quality) 

 
 
 
 

 

Average Outgoing Quality of  lots to get a  sense of 

As we observed with the OC curves, the higher the quality of the lot, the higher is the overall outgoing 
the chance that it will be accepted. Conversely, the lower the quality of the lot, the quality  of  the  product. 

greater is the chance that it will be rejected. Given that some lots are accepted Assuming  that  all  lots 
and  some rejected, it is useful to compute the  average outgoing  quality (AOQ) have the 

FIGURE 6-14 



ACCEPTANCE SAMPLING• 203 
 

 

 

 

 

€ Averageoutgoingquality (AOQ) 

The expected proportion of defective items that will be passed to the customer 

under the sampling plan. 
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same proportion of defective items, the average outgoing quality can be 

computed as follows: 

)p( N — n 
AOQ = (Pac  N ) where Pac = probability of accepting a given lot 

p = proportion of defective items in a 

lot N = the size of the lot 
n = the sample size chosen for inspection 

Usually we assume the fraction in the previous equation to equal 1 and simplify 

the equation to the following form: 
AOQ  = (Pac)p 

We can then use the information from Figure 6-14 to construct an AOQ curve for 

dif- ferent levels of probabilities of acceptance and different proportions of 

defects in a lot. As we will see, an AOQ curve is similar to an OC curve. 
 

 

 
 

EXAMPLE 

6.9 

Constructing an 

AOQCurve 

Let’s go back to our initial example, in which we sampled 5 items (n = 5) from a 

lot of 1000 ( N = 1000) with an acceptance range of no more than 1(c = 1) defect. 

Here we will construct an AOQ curve for this sampling plan and interpret its 

meaning. 

 

• Solution 

For the parameters N = 1000, n = 5, and c = 1, we can read the probabilities of 

Pac from Figure 6-14. Then we can compute the value of AOQ as AOQ = (Pac) p. 
 

p .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 

Pac .9974 .9185 .8352 .7373 .6328 .5282 .4284 .3370 .2562 .187 
5 

AOQ .0499 .0919 .1253 .1475 .1582 .1585 .1499 .1348 .1153 .093 
8 

 

Figure 6–15 shows a graphical representation of the AOQ values. The AOQ 

varies, depending on the proportion of defective items in the lot. The largest value 
oFfIGAUORQE ,6-c1a5lled the average o

A
u

O
tg

Q
oing qual- ity limit (AOQL), is around 15.85%. 

You can see from Figure 6-15.2t0hat the average outgoingquality 
 

.15 
 

.10 

 
The AOQ for n = 5 and c = 1.05 
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.20 

 
 
 
 
 

.30 

 
 
 
 
 

.40 .50 
Proportion of Defective Items (p) 
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In this chapter we have learned about a variety of different statistical quality 

control (SQC) tools that help managers make decisions about product and  

process quality. However, to use these tools properly managers must make a 

number of decisions. In this section we discuss some of the most important 

decisions that must be made when implementing SPC. 

 

How Much and How Often to Inspect 

Consider Product Cost and Product VolumeAs you know, 100 percent inspection is 

rarely possible. The question then becomes one of how often to inspect in order to 

minimize the chances of passing on defects and still keep inspection costs 

manage- able. This decision should be related to the product cost and product 

volume of what is being produced. At one extreme are high-volume, low-cost 

items, such as paper, pen- cils, nuts and bolts, for which 100 percent inspection 

would not be cost justified. Also, with such a large volume 100 percent inspection 

would not be possible because worker fatigue sets in and defects are often passed 

on. At the other extreme are low- volume, high-cost items, such as parts that will 

go into a space shuttle or be used in a medical procedure, that require 100 percent 

inspection. 

Most items fall somewhere between the two extremes just described. For these 

items, frequency of inspection should be designed to consider the trade-off 

between the cost of inspection and the cost of passing on a defective item. 

Historically, inspec- tions were set up to minimize these two costs. Today, it is 

believed that defects of any type should not be tolerated and that eliminating them 

helps reduce organizational costs. Still, the inspection process should be set up to 

consider issues of product cost and volume. For example, one company will 

probably have different frequencies of inspection for different products. 

 

Consider Process Stability Another issue to consider when deciding how much to 

inspect is the stability of the process. Stable processes that do not change 

frequently do not need to be inspected often. On the other hand, processes that  

are unstable and change often should be inspected frequently. For example, if it 

has been observed that a particular type of drilling machine in a machine shop 

often goes out of tolerance, that machine should be inspected frequently. 

Obviously, such decisions cannot be made without historical data on process 

stability. 

 

Consider Lot Size The size of the lot or batch being produced is another factor 

to consider in determining the amount of inspection. A company that produces a 

small number of large lots will have a smaller number of inspections than a 

company that produces a large number of small lots. The reason is that every lot 

should have some inspection, and when lots are large, there are fewer lots to 

 

will be high for lots that are either very good or very bad. For lots that have close to 30% of defective 

items, the AOQ is the highest. Managers can use this information to compute the worst possible 

value of their average outgoing quality given the proportion of defective items ( p). Then this infor- 

mation can be used to develop a sampling plan with appropriate levels of discrimination. 

IMPLICATIONS FOR MANAGERS 
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inspect. 
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STATISTICAL QUALITY CONTROL IN SERVICES 

 

Where to Inspect 

Since we cannot inspect every aspect of a process all the time, another important 

decision is to decide where to inspect. Some areas are less critical than others. 

Follow- ing are some points that are typically considered most important for 

inspection. 

 

Inbound Materials Materials that are coming into a facility from a supplier or 

distri- bution center should be inspected before they enter the production process. 

It is impor- tant to check the quality of materials before labor is added to it. For 

example, it would be wasteful for a seafood restaurant not to inspect the quality of 

incoming lobsters only to later discover that its lobster bisque is bad. Another 

reason for checking inbound ma- terials is to check the quality of sources of supply. 

Consistently poor quality in materials from a particular supplier indicates a 

problem that needs to be addressed. 

 

Finished Products Products that have been completed and are ready for shipment  

to customers should also be inspected. This is the last point at which the product 

is in the production facility. The quality of the product represents the company ’s 

overall quality. The final quality level is what will be experienced by the 

customer, and an in- spection at this point is necessary to ensure high quality in 

such aspects as fitness for use, packaging, and presentation. 

 

Prior to Costly Processing During the production process it makes sense to check 

quality before performing a costly process on the product. If quality is poor at that 

point and the product will ultimately be discarded, adding a costly process will 

simply lead to waste. For example, in the production of leather armchairs in a 

furniture fac- tory, chair frames should be inspected for cracks before the leather 

covering is added. Otherwise, if the frame is defective the cost of the leather 

upholstery and workman- ship may be wasted. 

Which Tools to Use 

In addition to where and how much to inspect, managers must decide which  

tools to use in the process of inspection. As we have seen, tools such as control 

charts are best used at various points in the production process. Acceptance 

sampling is best used for inbound and outbound materials. It is also the easiest 

method to use for attribute measures, whereas control charts are easier to use for 

variable measures. Surveys of industry practices show that most companies use 

control charts, especially x-bar and R-charts, because they require less data 

collection than p-charts. 
 

 

 

Statistical quality control (SQC) tools have been widely used in manufacturing 

organizations for quite some time. Manufacturers such as Motorola, General 

Electric, Toyota, and others have shown leadership in SQC for many years. 

Unfortunately, ser- vice organizations have lagged behind manufacturing firms in 

their use of SQC. The primary reason is that statistical quality control requires 

measurement, and it is dif fi- cult to measure the quality of a service. Remember 

that services often provide an in- tangible product and that perceptions of quality 

are often highly subjective. For example, the quality of a service is often judged 
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by such factors as friendliness and courtesy of the staff and promptness in 
resolving complaints. 
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A way to measure the quality of services is to devise quantifiable 

measurements of the important dimensions of a particular service. For example, 

the number of com- plaints received per month, the number of telephone rings 

after which a response is received, or customer waiting time can be quantified. 

These types of measurements are not subjective or subject to interpretation. 

Rather, they can be measured and recorded. As in manufacturing, acceptable 

control limits should be developed and the variable in question should be 

measured periodically. 

Another issue that complicates quality control in service organizations is that 

the service is often consumed during the production process. The customer is 

often present during service delivery, and there is little time to improve quality. 

The work- force that interfaces with customers is part of the service delivery. The 

way to manage this issue is to provide a high level of workforce training and to 

empower workers to make decisions that will satisfy customers. 

 

One service organization that has 

demonstrated quality leadership is 

The Ritz-Carlton Hotel Company. 

This luxury hotel chain caters to 

trav- elers who seek high levels of 

customer service. The goal of the 

chain is to be recognized for 

outstanding service quality. To this 

end, computer records are kept of 

regular clients’ preferences. To keep 

customers happy, employees are 

empowered to spend up to $2,000 

on the spot to correct any customer complaint. Consequently, The Ritz-Carlton has re- 

ceived a number of quality awards including winning  the  Malcolm  Baldrige 

National Quality Award twice. It is the only company in the service category to 

do so. 

Another leader in service quality that uses the strategy of high levels of 

employee training and empowerment is Nordstrom Department Stores. 

Outstanding customer service is the goal of this department store chain. Its 

organizational chart places the customer at the head of the organization. Records 

are kept of regular clients’ prefer- ences, and employees are empowered to make 

decisions on the spot to satisfy cus- tomer wants. The customer is considered to 

always be right. 

 

Service organizations, must also use 

statisti- cal tools to measure  their 

processes and monitor performance. For 

example, the Marriott is known for 

regularly collecting data in the form of 

guest surveys. The com- pany randomly 

surveys as many as a million guests each 

year. The collected data is stored in a large 

database and continually exam- ined for 

patterns, such as trends and changes in 

customer preferences. Statistical 

LINKS TO PRACTICE 

The Ritz-Carlton Hotel 
Company, L.L.C. 
www.ritzcarlton.com 

Nordstrom, Inc. 
www.nordstrom.com 

LINKS TO PRACTICE 

Marriott International, 
Inc. 
www.marriott.com 

http://www.ritzcarlton.com/
http://www.nordstrom.com/
http://www.marriott.com/


 

techniques are used to analyze the data 

and 

provide important information, such as identifying areas that have the highest impact 

on performance, and those areas that need improvement. This information allows 

Marriott to provide a superior level of customer service, anticipate customer de- 

mands, and put resources in service features most important to customers. 
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  OM ACROSS THE ORGANIZATION  

It is easy to see how operations managers can use the 

tools of SQC to monitor product and process quality. 

However, you may not readily see how these statistical 

techniques affect other functions of the organization. In 

fact, SQC tools require input from other functions, in 

flu- ence their success, and are actually used by other 

organi- zational functions in designing and evaluating 

their tasks. Marketing plays a critical role in setting  

up prod- uct and service quality standards. It is up to 

marketing to provide information on current and 

future quality standards required by customers and 

those being of- fered by competitors. Operations 

managers can incor- 

porate this information into product and process de- 

sign. Consultation with marketing managers is 

essential to ensure that quality standards are being 

met. At the same time, meeting quality standards 

is essential to the marketing department, since sales 

of products are dependent on the standards being 

met. 

Finance is an integral part of the statistical quality 

control process, because it is responsible for placing 

fi- nancial values on SQC efforts. For example, the 

finance department evaluates the dollar costs of 

defects, mea- sures financial improvements that 

result from tighten- ing of quality standards, and is 

actively involved in ap- proving investments in 

quality improvement efforts. 

Human resources becomes even more important 

with the implementation of TQM and SQC methods, 

as the role of workers changes. To understand and 

utilize SQC tools, workers need ongoing training and 

the ability to work in teams, take pride in their work, 

and assume higher levels of responsibility. The human 

resources de- partment is responsible for hiring 

workers with the right skills and setting proper 

compensation levels. 

 

Information systems is a function that makes 

much of the information needed for SQC accessible 

to all who need it. Information systems managers 

need to work closely with other functions during the 

imple- mentation of SQC so that they understand 

exactly what types of information are needed and in 

what form. As we have seen, SQC tools are 

dependent on information, and it is up to information 

systems managers to make that  information 

available. As a company develops ways of using  

TQM and SQC tools, information systems managers 

must be part of this ongoing evolution to en- sure 

that the company’s information needs are being met. 

All functions need to work closely together in the 

implementation of statistical process control. 

Everyone benefits from this collaborative 

relationship: opera- tions is able to produce the 

right product ef fi- ciently; marketing has the exact 

product cus- tomers are looking for; and finance 

can boast of an 

improved financial picture for the organization. 

SQC also affects various organizational functions 

through its direct application in evaluating quality 

per- formance in all areas of the organization. SQC 

tools are not used only to monitor the production 

process and ensure that the product being produced is 

within speci- fications. As we have seen in the 

Motorola Six Sigma ex- ample, these tools can be 

used to monitor both quality levels and defects in 

accounting procedures, financial record keeping, 

sales and marketing, office administra- tion, and other 

functions. Having high quality stan- dards in 

operations does not guarantee high quality in the 

organization as a whole. The same stringent stan- 

dards and quality evaluation procedures should be 

used in setting standards and evaluating the 

performance of all organizational functions. 
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INSIDE OM 
The decision to increase the level of quality standard and reduce the number of product 

defects requires support from every function within operations management. Two areas 

of operations management that are particularly affected are product and process design. 

Process design needs to be modified to incorporate customer-defined quality and simpli- 

fication of design. Processes need to be continuously monitored and changed to build 

quality into the process and reduce variation. Other areas that are affected are job design, 
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Chapter Highlights 

Statistical quality control (SQC) refers to 

statistical tools that can be used by quality 

professionals. 

Statistical quality control can be divided into 

three broad categories: descriptive statistics, 

acceptance sampling, and statistical process 

control(SPC). 

Descriptive statistics are used to describe 

quality characteristics, such as the mean, range, 

and vari- ance. Acceptance sampling is the 

process of randomly inspecting a sample of 

goods and deciding whether to accept or reject 

the entire lot. Statistical process control (SPC) 

involves inspecting a random sample of output 

from a process and deciding whether the 

process is producing products with 

characteristics that fall within preset 

specifications. 

There are two causes of variation in the quality of 

a product or process: common causes and 

assignable causes. Common causes of variation 

are random causes that we cannot identify. 

Assignable causes of variation are those that can 

be identified and eliminated. 

A control chart is a graph used in statistical 

process control that shows whether a sample of 

data falls within the normal range of variation. 

A control chart has upper and lower control 

limits that separate common from assignable 

causes of variation. Con- trol charts for 

variables monitor characteristics that can be 

measured and have a continuum of values, 

such as height, weight, or volume. Control 

charts for 

 

 
attributes are used to monitor characteristics 

that have discrete values and can be 

counted. 

Control charts for variables include x-bar 

charts and R-charts. X-bar charts monitor the 

mean or average value of a product 

characteristic. R-charts monitor the range or 

dispersion of the values of a product 

characteristic. Control charts for attributes 

include p-charts and c-charts. P-charts are used 

to monitor the proportion of defects in a 

sample. C-charts are used to monitor the actual 

number of defects in a sample. 

Process capability is the ability of the 

production process to meet or exceed preset 

specifications. It is measured by the process 

capability index, Cp, which is computed as the 

ratio of the speci fication width to the width of 

the process variability. 

The term Six Sigma indicates a level of 

quality in which the number of defects is no 

more than 3.4 parts per million. 

The goal of acceptance sampling is to 

determine criteria for acceptance or rejection 

based on lot size, sample size, and the desired 

level of confidence. 

Operating characteristic (OC) curves are graphs 

that show the discriminating power of a 

sampling plan. 

It is more difficult to measure quality in services 

than in manufacturing. The key is to devise 

quantifiable measurements for important service 

dimensions. 
 

Key Terms 

statistical quality control 

(SQC) 172 descriptive 
statistics 172 

statistical process control 

(SPC) 173 acceptance 

sampling 173 

 
common causes of 

variation 174 

assignable causes 

of variation 174 

mean (average) 

174 

 
range 175 

standard deviation 175 

control chart 176 

 
 

as we expand the role of employees to become responsible for monitoring quality levels 

and to use statistical quality control tools. Supply chain management and inventory con- 

trol are also affected as we increase quality standard requirements from our suppliers and 

change the materials we use. All areas of operations management are involved when in- 

creasing the quality standard of a firm. 

 4  
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 2  

 1  
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x-bar chart 178 
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n 

c 

 

 

Formula Review 

n 

 

 
5. Control Limits for R- 

Charts 

 

 
UCL = D R 

 

1. Mea 

n 

\ xi 

x = i=1  

n 

 
n 

 

 

 

6. Control Limits for p- 

Charts 

4 

 

LCL = D R 

3 

2. Standard 

Deviation 
\(xi — x)2 

= i=1 

UCL = p + z ( p) 
 

 
 

n — 1 

 

3. Control Limits for x-Bar Charts Upper 

control limit 

 

7. Control Limits for c- 

Charts 

LCL = p — z ( p) 

UCL = c + z 

(UCL) = x + z x LCL = c + z 

 
Lower control limit 

(LCL) = x — z x 8. Measures for Process Capability 

specification width 

 
 

USL — LSL 

x = Cp = 
process 

= 
6 

width 

4. Control Limits for x-Bar Charts Using Sample 

Range as an 

Cpk  = min(
 USL — 

,
 — LSL 

)
 

 

Estimate of Variability 
3 3

 

Upper control 

limit (UCL) = x 
+ A2 R 

Lower control 

limit (LCL) = x 
— A2 R 

9. Average Outgoing Quality AOQ = (Pac)p 

 

 

 

 

Solved Problems 

• Problem 1 
A quality control inspector at  the Crunchy Potato Chip Com-  If  the  standard  deviation  of  the  bagging  operation  is  0.2   

pany has taken 3 samples with 4 observations each of the vol- ounces, use the information in the table to develop control lim- 

ume of bags filled. The data and the computed means are its of 3 standard deviations for the bottling operation. 

shown in the following table: 
 

 
Sample of Potato Chip Bag Volume in Ounces 

Sample Observations 

• Solution 
The center line of the control data is the average of the samples: 

 

x = 
12.4 + 12.5 + 12.5 + 12.6 

= 12.5 ounces
 

4 

c 
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Numbe 
  r  

1 2 3 4 

1 12. 
5 

12. 
3 

12. 
6 

12. 
7 

2 12. 
8 

12. 
4 

12. 
4 

12. 
8 

3 12. 
1 

12. 
6 

12. 
5 

12. 
4 

4 12. 
2 

12. 
6 

12. 
5 

12. 
3 

5 12. 
4 

12. 
5 

12. 
5 

12. 
5 

6 12. 
3 

12. 
4 

12. 
6 

12. 
6 

7 12. 
6 

12. 
7 

12. 
5 

12. 
8 

8 12. 
4 

12. 
3 

l2.6 12. 
5 

9 12. 
6 

12. 
5 

l2.3 12. 
6 

10 12. 
  1  

12. 
7  

12. 
5  

12. 
8  

Mean x 12. 
4 

12. 
5 

12. 
5 

12. 
6 
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12.90 
X-Bar Chart (Based on Known Sigma) 
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Following is the associated control chart: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The problem can also be solved using a spreadsheet. 

 

  A B C D E F G  

1        

2 Crunchy Potato Chips Company    

3        

 F7: 

=AVERAGE( 

B7:E7) 

 

4       

5  Bottle Volume in Ounces   

6 Sample 

Num 

Obs 

1 

Obs 

2 

Obs 

3 

Obs 

4 

Average  

7 1 12.50 12.30 12.60 12.70 12.53  

8 2 12.80 12.40 12.40 12.80 12.60  

9 3 12.10 12.60 12.50 12.40 12.40  

1 
0 

4 12.20 12.60 12.50 12.30 12.40  

1 
1 

5 12.40 12.50 12.50 12.50 12.48  

1 
2 

6 12.30 12.40 12.60 12.60 12.48  

1 
3 

7 12.60 12.70 12.50 12.80 12.65  

 1 
4 

8 12.40 12.30 12.60 12.50 12.45  

 

O
u
n
c
e
s
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1 
5 

9 12.60 12.50 12.30 12.60 12.50  

1 
6 

1 
0 

12.10 12.70 12.50 12.80 12.53  

1 
7 

     12.50  

1 
8 

 Number of 

Samples 

10  Xbar-bar  

1 
9 

Number of Observations per 
Sample 

4    

2 

0 
   F17: 

=AVERAGE(F 

7:F16) 

   

2 
1 

         

2 
2 

Computations for X-Bar 

Chart 

  
 

 

D23: 

=F17 
  

23 Overall Mean (Xbar- 

bar) = 

12.50    
 

2 

4 
 Sigma for 

Process = 

0. 

2 

ounces  D25: 

=D24/SQRT( 

D19) 

 

2 
5 

Standard Error of the 
Mean = 

0.1     

2 
6 

Z-value for control 
charts = 

3    

27        

 D28: 
=D23 

  

2 
8 

 CL: Center 

Line = 

12.50  D29: 
=D23- 

D26* 

D25 

  

2 
9 

LCL: Lower Control 
Limit = 

12.20  D30: 

=D23+D26* 

D25 

  

30 UCL: Upper Control 

Limit = 

12.80    
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al 

Construct a three-sig 

1 

0 

 

 

• Problem 2 

Use of the sample range to estimate variability can 

also be ap- plied to the Crunchy Potato Chip 

operation. A quality control inspector has taken 4 

samples with 5 observations each, mea- suring the 

volume of chips per bag. If the average range for 

the 4 samples is .2 ounces and the average mean of 

the observa- 

 
 

The value of A2 is obtained from Table 6-1. For n = 5, A2 = 

.58. This leads to the following limits: 

The center of the control chart is CL = 12.5 ounces 

UCL = x + A2 R = 12.5 + (.58)(.2) = 12.62 

tions is 12.5 ounces, develop three-sigma control limits for the 

bottling 

operation. 

 

• Solution  x = 12.5 

ounces 

R = .2 

LCL = x — A2 R = 12.5 — (.58)(.2) = 12.38 

 

• Problem 3 

Ten samples with 5 observations each have been 

taken from the Crunchy Potato Chip Company 

plant in order to test for vol- ume dispersion in the 

bagging process. The average sample range was 

found to be .3 ounces. Develop control limits for 

the sample range. 

 
From Table 6-1 for n = 5: 

D4 = 2.11 
D3 = 0 

Therefore, 

UCL = D4 R = 2.11(.3) = .633 

LCL = D3 R = 0(.3) = 0 
 

• Solution  

R = .3 ounces 

n = 5 
 

• Problem 4 

A production manager at a light bulb plant has 

inspected the number of defective light bulbs in 10 

random samples with 30 observations each. 

• Solution 

The center line of the chart is:  

CL = p = 
number 

defective 

 

 

 
17 = .057 

Following are the numbers of defective light bulbs 

found: 
number of 

observations 

= 

300 
 p(1 — p)  (.057)(.943) 

of Number 

s 

Number 

Observation 

p = n 
=  30 

= .042 

Sample Defective in Sample 17 300 

1 1 30 

  2 3 30  

3 3 30 

4 1 30 

5 0 30 

6 5 30 

7 1 30 

8 1 30 

9 1 30 

ma control chart 

( z = 3) with this infor- mation. 

1 

 

3 
0 

T 

o 

t 
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UCL = p + z( 

LCL = p — z( 
p) = .057 + 

3(.042) = .183 

p) = .057 — 

3(.042) = —.069 

9: 0 
 

UCL = .183 

 
CL = .057 

 
LCL = 0 

2 

 
 
 
 
 
 
 
 

Sample Number 4 6 8 10 

P
ro

p
o
rt

io
n
 D

e
fe

c
ti
v
e
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0.0422119 9 

l limit o s using the fol lowing d ata: 

14 
0.166 

13 
0 5 12 

11 
3 10 

3 2 9 

1 1 8 
# Defective Sample # 7 

6 
mber Sam Nu 5 

4 

3 
uality Q 

b Light Bul p-Chart for 2 

8/C$4 

1 
C 
B A G F E D 

Sample Si ze 30 

ples10 

s p C8: =B 

0.1 

6 5 
0 

 

 
This is also solved using a spreadsheet. 

 

 

 

 

 

 

 

0.03333333 

 
 
 

 

 

 

 
  

0.03333333 
16 9 1 

0.03333333 

17 10 1 

0.03333333 

18 

19 p bar = 
0.05666667 

20 Sigma_p = 

 

C19:  

=SUM(B8:B17)/(C4* 

C5) C20: 

=SQRT((C19*(1- 

C19))/C4) 

 
 

C23: =C19 

C24: =MAX(C$19-    

C$21*C$20,0) C25: 

=C$19+C$21*C$20 

1 8 15 
0.03333333 

1 7 

66667 

33333 0.033 
1 4 
3 0.1 

21 Z-value for control charts = 3 

22   

23 CL: Center Line = 0.05666667 

24 LCL: Lower Control Limit = 0 

25 UCL: Upper Control Limit = 0.18330263 

 

 
Week 

Number of 

Complaints 
 

Week 

Number of 

Complaints 
1 0 11 4 

2 3 12 3 



210  • CHAPTER 6 STATISTICAL QUALITY CONTROL 
 

 
 

The resulting control chart is: 
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LCL CL UCL p 

 

 

 
 

6  

 
5 

     

 
4 

     

 
3 

     

 
2 

     

 
1 

     

 
0 

 
 

1 2 3 

 
 

4 

 
 

5 

 
 

6 7 8 

 
 

9 10 11 12 13 14 15 16 17 18 19 20 

Week 

 

• Problem 6 

Three bagging machines at the Crunchy Potato 

Chip Company are being evaluated for their 

capability. The following data are recorded: 

• Solution 

To determine the capability of each machine we 

need to divide the specification width (USL — LSL 

= 12.65 — 12.35 = .3) by 6o for each machine: 

 

Bagging 

Machine 
Standard Deviation Bagging C =

 USL — 

LSL 

A .2 Machi 

ne 

o 

US 
L 

— 

LSL 

6o p 6o 

B .3 A .2 .3 1.2 0.2 
5 

C .05 B .3 .3 1.8 0.1 
7 

  C .05 .3 .3 1.0 
0 

If specifications are set between 12.35 and 12.65 

ounces, deter- mine which of the machines are 

capable of producing within specification. 

Looking at the Cp values, only machine C is  

capable of bagging the potato chips within 

specifications, because it is the only machine that 

has a Cp value at or above 1. 
 

• Problem 7 

Compute the Cpk measure of process capability for 

the follow- ing machine and interpret the findings. 

What value would you 

Cpk = 

min( 

USL — 
, 

3 

— LS 

L 3 

) 
have obtained with the Cp 

measure? 
= min(

 80 — 60 
,
 60 — 50 

)
 

Machine Data: USL = 80 P 

LSL = 50 r 
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ess o= 5 

Process µ = 

60 

3(5) 

= min(1.33, 

0.67) 

= 0.67 

3(5) 

 
• Solution 

To compute the Cpk measure of process 

capability: 

This means that the process is not capable. The Cp 

measure of process capability gives us the following 

measure: 

C =   
30 

= 1.0 

p 6(5) 

which leads us to believe that the process is capable. 
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Discussion Questions 

1. Explain the three categories of statistical 

quality control (SQC). How are they different, what 

different information do they provide, and how can 

they be used together? 

2. Describe three recent situations in which you 

were directly affected by poor product or service 

quality. 

3. Discuss the key differences between common 

and assigna- ble causes of variation. Give examples. 

4. Describe a quality control chart and how it can 

be used. What are upper and lower control limits? 

What does it mean if an observation falls outside the 

control limits? 

5. Explain the differences between x-bar and R- 

charts. How 

 

 
can they be used together and why would it be 

important to use them together? 

6. Explain the use of p-charts and c-charts. When 

would you use one rather than the other? Give 

examples of measurements for both p-charts and c- 

charts. 

7. Explain what is meant by process capability. 

Why is it im- portant? What does it tell us? How can 

it be measured? 

8. Describe the process of acceptance sampling. 

What types of sampling plans are there? What is 

acceptance sampling used for? 

9. Describe the concept of Six Sigma quality. 

Why is such a high quality level important? 
 

Problems 

1. A quality control manager at a manufacturing 

facility has taken 4 samples with 4 observations each 

of the diameter of a part. 
(a) Compute the mean of each sample. 

(b) Compute an estimate of the mean and 

standard devia- tion of the sampling 

distribution. 

(c) Develop control limits for 3 standard 

deviations of the product diameter. 
Samples of Part Diameter in 

   Inches 1 2 3 4  
 

5.8 6.2 6.1 6.0 

5.9 6.0 5.9 5.9 

6.0 5.9 6.0 5.9 

6.1 5.9 5.8 6.1 
 

2. A quality control inspector at the Beautiful 

Shampoo Company has taken 3 samples with 4 

observations each of the volume of shampoo bottles 

filled. The data collected by the in- spector and the 

computed means are shown here: 

 
Samples of Shampoo Bottle 

  Volume in Ounces  

 Observation 1 2 3 

If the standard deviation of the shampoo bottle 

filling oper- ation is .2 ounces, use the information 

in the table to develop control limits of 3 standard 

deviations for the operation. 

3. A quality control inspector has taken 4 samples 

with 5 ob- servations each at the Beautiful Shampoo 

Company, measuring the volume of shampoo per 

bottle. If the average range for the 4 samples is .4 

ounces and the average mean of the observations is 

19.8 ounces, develop three sigma control limits for 

the bot- tling operation. 

1 19.7 19.7 19.7 

2 20.6 20.2 18.7 

3 18.9 18.9 21.6 

4 20.8 20.7 20.0 

Mean 20.0 19.875 20.0 
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4. A production manager at Ultra Clean 

Dishwashing company is monitoring the quality of 

the company’s production process. There has been 

concern relative to the quality of the operation to 

accurately fill the 16 ounces of dishwashing liquid. 

The product is designed for a fill level of 16.00 ± 0.30. 

The company collected the following sample data on 

the production process: 

 

  Observations  

 
Sampl 
    e  

1 2 3 4 

1 16.4 
0 

16.1 
1 

15.9 
0 

15.7 
8 

2 15.9 
7 

16.1 
0 

16.2 
0 

15.8 
1 

3 15.9 
1 

16.0 
0 

16.0 
4 

15.9 
2 

4 16.2 
0 

16.2 
1 

15.9 
3 

15.9 
5 

5 15.8 
7 

16.2 
1 

16.3 
4 

16.4 
3 

6 15.4 
3 

15.4 
9 

15.5 
5 

15.9 
2 

7 16.4 
3 

16.2 
1 

15.9 
9 

16.0 
0 

8 15.5 
0 

15.9 
2 

l6.12 16.0 
2 

9 16.1 
3 

16.2 
1 

16.0 
5 

16.0 
1 

10 15.68 16.43 16.20 15.97 
 

 

(a) Are the process mean and range in statistical control? 

(b) Do you think this process is capable of 

meeting the de- sign standard? 

5. Ten samples with 5 observations each have 

been taken from the Beautiful Shampoo Company 

plant in order to test for volume dispersion in the 

shampoo bottle filling process. The av- erage 

sample range was found to be .3 ounces. Develop 

control limits for thesample range. 

6. The Awake Coffee Company produces gourmet 

instant cof- fee. The company wants to be sure that 

the average fill of coffee containers is 12.0 ounces. To 

make sure the process is in control, a worker 

periodically selects at random a box containing 6 

containers of coffee and measures their weight. When 

the process is in control, the range of the weight of 

coffee samples averages .6 ounces. 
 

 

(a) Develop an R-chart and an x-chart for this process. 
(b) The measurements of weight from the last 

five samples taken of the 6 containers are 

shown below: 
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Is the process in control? Explain your answer. 

 
Sampl 
    e  

x R 

1 12.1 .7 

2 11.8 .4 

3 12.3 .6 

4 11.5 .4 
    5  11.6  .9 

 

7. A production manager at a Contour 

Manufacturing plant has inspected the number of 

defective plastic molds in 5 ran- dom samples of 20 

observations each. Following are the number of 

defective molds found in each sample: 

 

 
 

Sampl 

e 

 

Number 

of 

Defects 

Number of 

Observatio 

ns 

in 
  Sample  

1 1 20 

2 2 20 

3 2 20 

4 1 20 

    5  0  20  

Total 6 100 

 

Construct a three-sigma control chart ( z = 3) with 

this infor- mation. 

8. A tire manufacturer has been concerned about 

the num- ber of defective tires found recently. In 

order to evaluate the true magnitude of the problem, 

a production manager selected ten random samples 

of 20 units each for inspection. The number of 

defective tires found in each sample are as follows: 
(a) Develop a p-chart with a z = 3. 

(b) Suppose that the next 4 samples selected had 

6, 3, 3, and 4 defects. What conclusion can 

you make? 

 

9 3 
   10  1  

 

9. U-learn University uses a c-chart to monitor student 

com- plaints per week. Complaints have been recorded 

over the past 10 weeks. Develop three-sigma control limits 

using the follow- ing data: 

 
Sampl 
    e  

Number 
Defective  

1 1 

2 3 

3 2 

4 1 

5 4 

6 1 

7 2 
8 0 
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Week Number of Complaints 
 

1 0 

2 3 

ounces, determine which of the machines are 

capable of producing within specifi- cations. 

12. Compute the Cpk measure of process capability 
for the following machine and interpret the findings. 

3 1 What value would you have obtained with the Cp 

4 1 measure?  

5 0 Machine Data: USL = 100  

6 0 LSL = 70  

7 3 Process o = 5  

8 1 Process µ = 80  

9 1   

10 2   

 

 

10. University Hospital has been concerned 

with the number of errors found in its billing 

statements to patients. An audit of 100 bills 

per week over the past 12 weeks revealed the 

following number of errors: 

 
Wee 
   k  

Number of 
Errors  

1 4 

2 5 

3 6 

4 6 

5 3 

6 2 

7 6 
8 7 

9 3 

10 4 

11 4 
  12  4  

 

(a) Develop control charts with z = 3. 

(b) Is the process in control? 

11. Three ice cream packing machines at 

the Creamy Treat Company are being 

evaluated for their capability. The following 

data are recorded: 

 
Packing 

  Machine  
Standard 
Deviation  

A .2 

B .3 
  C  .05  

 

If specifications are set between 15.8 and 16.2 
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13. Develop an OC curve for a sampling plan in 

which a sample of n = 5 items is drawn from lots of 

N = 1000 items. The accept/reject criteria are set up 

in such a way that we accept a lot if no more than 

one defect (c =1) is found. 

14. Quality Style manufactures self-assembling 

furniture. To reduce the cost of returned orders, the 

acceptance sampling plan for Med-Tech. The 

contract with the supplier states that the acceptable 

quality level is 1% defective. Also, the lot toler- ance 

proportion defective is 4%, the producer’s risk is 5%, 

and theconsumer’s risk is 10%. 

(a) Develop an acceptance sampling plan for 

Joshua that meets the stated criteria. 

manager  of  its  quality control department inspects (b) Draw the OC curve for the plan you developed. 

the final packages each day using randomly selected 

samples. The defects include wrong parts, missing 

connection parts, parts with apparent painting prob- 

lems, and parts with rough surfaces. The average 

defect rate is three per day. 

(a) Which type of control chart should be used? 

Construct a control chart with three-sigma 

controllimits. 

(b) Today the manager discovered nine defects. 

What does this mean? 

15. Develop an OC curve for a sampling plan in 

which a sample of n = 10 items is drawn from lots 

of N = 1000. The accept/reject criteria is set up in 

such a way that we accept a lot if no more than one 

defect (c = 1) is found. 

16. The Fresh Pie Company purchases apples 

from a local farm to be used in preparing the filling 

for their apple pies. Sometimes the apples are fresh 

and ripe. Other times they can be spoiled or not ripe 

enough. The company has decided that they need an 

acceptance sampling plan for the purchased ap- ples. 

Fresh Pie has decided that the acceptable quality 

level is 5 defective apples per 100, and the lot 

tolerance proportion de- fective is 5%. Producer’s 

risk should be no more than 5% and consumer’s risk 

10% orless. 

(a) Develop a plan that satisfies the above 

requirements. 

(b) Determine the AOQL for your plan, 

assuming that the lot size is 1000 apples. 

17. A computer manufacturer purchases 

microchips from a world-class supplier. The buyer 

has a lot tolerance proportion defective of 10 parts  

in 5000, with a consumer’s risk of 15%. If the 

computer manufacturer decides to sample 2000 of 

the mi- crochips received in each shipment, what 

acceptance number, c, would they want? 

18. Joshua Simms has recently been placed in 

charge of pur- chasing at the Med-Tech Labs, a 

medical testing laboratory. His job is to purchase 

testing equipment and supplies. Med-Tech currently 

has a contract with a reputable supplier in the indus- 

try. Joshua’s job is to design an appropriate 

(c) What is the AOQL of your plan, assuming a 

lot size of 1000? 

19. Breeze Toothpaste Company makes tubes of 

toothpaste. The product is produced and then 

pumped into tubes and capped. The production 

manager is concerned whether the fill- 
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ing process for the tubes of toothpaste is in 

statistical control. The process should be centered 

on 6 ounces per tube. Six sam- ples of 5 tubes were 

taken and each tube was weighed. The weights are: 

 

  Ounces of Toothpaste per Tube  

of chips with an up- per specification limit of 10.5 

ounces and a lower specification limit of 9.5 ounces. 

The packaging process results in bags with an 

average net weight of 9.8 ounces and a standard 

deviation of 

0.12 ounces. The company wants to determine if 

the process is capable of meeting design 

specifications. 

22. The Crunchy Potato Chip Company sells chips 

in boxes with a net weight of 30 ounces per box 

(850 grams). Each box contains 10 individual 3- 

ounce packets of chips. Product design 

specifications call for the packet- filling process 

average to be set at 86.0 grams so that the average 

net weight per box will be 860 grams. Specification 

width is set for the box to weigh 850 ± 12 grams. 

The standard deviation of the packet-filling process 

is 

 

 

 

(a) Develop a control chart for the mean and 

range for the available toothpaste data. 

(b) Plot the observations on the control chart 

and comment on your findings. 

20. Breeze Toothpaste Company has been having 

a problem with some of the tubes of toothpaste 

leaking. The tubes are packed in containers with 

100 tubes each. Ten containers of toothpaste have 

been sampled. The following number of tooth- 

paste tubes werefound to have leaks: 

 
 

Sampl 

e 

Number of 

Leaky 

Tubes 

 

Sampl 

e 

Number 

of 

Leaky 
Tubes 

1 4 6 6 

2 8 7 10 

3 12 8 9 

4 11 9 5 
5 12 10 8 

Total 85 

 

Develop a p-chart with three-sigma control limits 

and evaluate whether the process is in statistical 

control. 

21. The Crunchy Potato Chip Company packages 

potato chips in a process designed for 10.0 ounces 

grams. The target process capability ratio is 1.33. 

The pro- duction manager has just learned that 

the packet- filling process average weight has 

dropped down to 85.0 grams. Is the packag- ing 

process capable? Is an adjustment needed? 

Sampl 
    e  

1 2 3 4 5 

1 5.7 
8 

6.3 
4 

6.2 
4 

5.2 
3 

6.1 
2 

2 5.8 
9 

5.8 
7 

6.1 
2 

6.2 
1 

5.9 
9 

3 6.2 
2 

5.7 
8 

5.7 
6 

6.0 
2 

6.1 
0 

4 6.0 
2 

5.5 
6 

6.2 
1 

6.2 
3 

6.0 
0 

5 5.7 
7 

5.7 
6 

5.8 
7 

5.7 
8 

6.0 
3 

6 6.0 
  0  

5.8 
9  

6.0 
2  

5.9 
8  

5.7 
8  
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CASE: ScharadinHotels 

Scharadin Hotels are a national hotel chain started Coleman, head of MIS, defended the system, stating that 

in  1957  by  Milo  Scharadin.  What  started as one the  system  was  sound  and  the  problems  were  exag- 

upscale hotel in New York City turned into a highly 

reputable national hotel chain. Today Scharadin 

Hotels serve over 100 1ocations and are recognized 

for their customer service and quality. Scharadin 

Hotels are typ- ically located in large metropolitan 

areas close to convention centers and centers of 

commerce. They cater to both business and 

nonbusiness customers and offer a wide array of 

services. Maintaining high customer service has 

been considered a prior- ity for the hotel chain. 

 
A Problem with Quality 

The Scharadin Hotel in San Antonio, Texas, had 

recently been experiencing a large number of guest 

complaints due to billing errors. The complaints 

seem to center around guests disputing charges on 

their final hotel bill. Guest complaints ranged from 

extra charges, such as meals or services that were  

not purchased, to confusion for not being charged at 

all. Most hotel guests use express checkout on their 

day of departure. With express check- out the hotel 

bill is left under the guest’s door in the early morn- 

ing hours and, if all is in order, does not require any 

additional action on the guest’s part. Express 

checkout is a welcome service by busy travelers who 

are free to depart the hotel at their conve- nience. 

However, the increased number of billing errors 

began creating unnecessary delays and frustration 

for the guests who unexpectedly needed to settle 

their bill with the front desk. The hotel staff often 

had to calm frustrated guests who were rushing to 

the airport and were aggravated that they were 

getting charged for items they had not purchased. 

 

Identifying the Source ofthe Problem 

Larraine Scharadin, Milo Scharadin’s niece, had 

recently been 

appointed to run the San Antonio hotel. A recent 

business school graduate, Larraine had grown up in 

the hotel business. She was poised and confident, 

and understood the importance of high quality for 

the hotel. When she became aware of the billing 

problem, she immediately called a staff meeting to 

un- cover the source of the problem. 

During the staff meeting discussion quickly 

turned to prob- lems with the new computer system 

and software that had been put in place. Tim 

gerated. Tim claimed that a few hotel guests made an 

issue of a 
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few random problems. Scott Schultz, head of 

operations, was not so sure. Scott said that he 

noticed that the number of com- plaints seem 

to have significantly increased since the new 

system was installed. He said that he had asked 

his team to perform an audit of 50 random 

bills per day over the past 30 days. Scott 

showed the following numbers to Larraine, 

Tim, and the other staff members. 

 

f 

 

 

 

 

 

 

 

 

 

 

 
Everyone looked at the data that had been 

presented. Then Tim exclaimed: “Notice that 

the number of errors increases in the last third 

of the month. The computer system had been 

in place for the entire month so that can ’t be 

the problem. Scott, it is probably the new 

employees you have on staff that are not en- 

tering the data properly.” Scott quickly 

retaliated: “The employ- ees are trained 

properly! Everyone knows the problem is the 

computer system!” 

The argument between Tim and Scott 

become heated, and Larraine decided to step 

in. She said, “Scott, I think it is best if you 

perform some statistical analysis of that data 

and send us your findings. You know that we 

want a high-quality stan- dard. We can’t be 

Motorola with six-sigma quantity, but let’s try 

for three-sigma. Would you develop some 

control charts with the data and let us know if 

you think the process is in control?” 

Case Questions 

1. Set up three-sigma control limits with the given data. 

2. Is the process in control? Why? 

3. Based on your analysis do you think the 

problem is the new computer system or 

something else? 

4. What advice would you give to Larraine based 

on the information that you have? 
 

 

 

 

 

 

 

 
 

 

 
Day 

Number of 

Incorrect 

Bills 

 

 
Day 

Number of 

Incorrect 

Bills 

 

 
Day 

Number o 

Incorrect 

Bills 
1 2 11 1 21 3 

2 2 12 2 22 3 

3 1 13 3 23 3 

4 2 14 3 24 4 

5 2 15 2 25 5 

6 3 16 3 26 5 

7 2 17 2 27 6 

8 2 18 2 28 5 

9 1 19 1 29 5 

10 2 20 3 30 5 
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CASE: Delta Plastics, Inc.(B) 

Jose De Costa, Director of Manufacturing at Delta 

Plastics, sat at his desk looking at the latest 

production quality report, show- ing the number and 

type of product defects per week (see the quality 

report in Delta Plastics, Inc. Case A, Chapter 5). He 

was faced with the task of evaluating production 

Jose was opposed to starting production until R&D 

had fully completed testing and refining the new 

material. However, the CEO of Delta ordered 

production despite objections from man- ufacturing 

and R&D. Jose carefully looked at the report in 

front of him and prepared to analyze the results. 

quality for prod- ucts made with two different 

materials. One of the materials was new and called 

“super plastic” due to its ability to sustain large 

temperature changes. The other material was the 

standard plastic that had been successfully used by 

Delta for many years. 

The company had started producing products 

with the new “super plastic” material only a month 

earlier. Jose suspected that the new material could 

result in more defects during the pro- duction 

process than the standard material they had been 

using. 

Case Questions 

1. Prepare a three-sigma control chart for both 

production processes, using the new and standard 

material (use the quality report in Delta Plastics, 

Inc. Case A, Chapter 5). Are both processes in 

control? What can you conclude? 

2. Are both materials equally subject to the defects? 

3. Given your findings, what advice would you give Jose? 

 

 
 

Interactive Learning 

Enhance and test your knowledge of Chapter 6. Use the CD and visit our Web sitew,ww.wiley.com/college/reid, for 

additional resources and information. 

1. Spreadsheets Solved Problems 1 and 4 

2. Company Tours 

Rickenbacker International Corporation 

Genesis Technologies, Inc. 

Canadian Springs Water Company 

3. AdditionalWeb Resources 

American Society for Quality Control, 

www.asqc.org Australian Quality Council, 

www.aqc.org.au 

4. Internet Challenge Safe-Air 
 

To gain business experience, you have volunteered 

to work at Safe-Air, a nonprofit agency that 

monitors airline safety records and customer 

service. Your first assignment is to compare three 

airlines based on their on-time arrivals and 

departures. Your manager has asked you to get your 

information from the Inter- net. Select any three 

airlines. For an entire week check the daily arrival 

and departure schedules of the three airlines from 

your city or closest airport. Remember that it is 

important to com- pare the arrivals and departures 

from the same location and during the same time 

period to account for factors such as the weather. 

Record the data that you collect for each airline. 

Then 

http://www.asqc.org/
http://www.asqc.org/
http://www.aqc.org.au/
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decide which types of statistical quality control tools 

you are going to use to evaluate the airlines’ 

performances. Based on your findings, draw a 

conclusion regarding the on-time arrivals and 

departures of each of the airlines. Which is best and 

which is worst? Are there large differences in 

performance among the airlines? Also describe the 

statistical quality control tools you have decided to 

use to monitor performance. If you have cho- sen to 

use more than one tool, are you finding the tools 

equally useful or is one better at capturing 

differences in performance? Finally, based on what 

you have learned so far, how would you perform 

this analysis differently in the future? 
 

Virtual Company: Valley Memorial Hospital 

Assignment: Statistical Quality Control This assignment involves controlling nursing 

hours at Valley Memorial Hospital. Lee Jordan, director of the hospital’s Medical/Surgical 

Nursing Unit, has already told you that VMH employs more than 500 nurses, with an 

annual nursing budget of $5,000,000. “We’re trying for a five 
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percent reduction in nursing FTEs — full-time equivalents,” he says. “I’ve been 

personally record- ing the nursing hours per patient per day for over three 

months in Med/Surg. I would like you to look at the numbers and see if you can 

tell me how to meet our goals. 

To complete this assignment, go to www.wiley.com/college/reid to get more details on the 

fol- 

lowing projects: 

1. Develop upper and lower limits for FTEs within which the Medical/Surgical Nursing 

Unit will be efficient and will maintain quality at least 95 percent of the time. 

2. Look at the data and determine whether Jordan is really in control of nursing hours. If he 

isn ’t, tell him why. 

3. Determine how the Medical/Surgical Nursing Unit can bring nursing hours per patient 

day (NHPPD) down to 8.00. Also, provide some advice on how Jordan can get his staff 

to buy into the concept of an NHPPD tar- get of 8.00. 

4. Jot down your thoughts on the three statistical problems, which are contained in memos 

Jordan received from other VMH staff: 

• Will Hartmann, in the Business Office has kept track of billing errors for the past 21 
weeks. Based on this data, determine control limits for billing errors. Also, is the 
percentage of defective bills a valid measure for this analysis? 

• Analyze trends in patient surveys about the meals served at VMH. Doug Jennings, in Dietary, thinks 
the 

number of OUTSTANDING responses has been declining, but he’s not sure if 

that decline is statistically significant. 

• Margot Hamilton, in Housekeeping, has been keeping track of defects in room cleaning. Based on  
her 
data, develop some recommendations on how she can get better results. 

 

To access the Web site: 

 

• Go to www.wiley.com/college/reid 

• Click Student Companion Site 

• Click VirtualCompany 

• Click Kaizen Consulting, Inc. 

• Click Consulting Assignments 

• Click Statistical Quality Control 
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